【題目】已知點在橢圓上,過點軸于點

(1)求線段的中點的軌跡的方程

(2)設(shè)、兩點在(1)中軌跡上,點,兩直線的斜率之積為,且(1)中軌跡上存在點滿足,當面積最小時,求直線的方程.

【答案】(1);(2)

【解析】

1)設(shè)線段的中點為,得出點的坐標為,然后代入橢圓方程并化簡后得出所求軌跡方程;

2)設(shè)直線的方程為,設(shè)點,將直線的方程與橢圓聯(lián)立,消去,并列出韋達定理,利用直線的斜率之積得出,可得出,由,于是得出直線的方程為,將該直線與橢圓方程聯(lián)立并結(jié)合兩點間的距離公式得出,最后利用三角形的面積公式以及基本不等式求出面積的最小值,利用基本不等式等號成立的條件求出的值,即可求出直線的方程。

1)設(shè)線段的中點為,則,,

;

2)設(shè)直線,,,,

聯(lián)立,得

,

得到

,解得,同理

,

,即時,有最小值為

此時直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線,過拋物線上點B作切線y軸于點

)求拋物線方程和切點的坐標;

)過點作拋物線的割線,在第一象限內(nèi)的交點記為,,設(shè)y軸上一點,滿足中點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程是:

(1)求曲線的普通方程和直線的直角坐標方程.

(2)點是曲線上的動點,求點到直線距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)求的普通方程及的直角坐標方程;

(2)若曲線與曲線分別交于點,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實常數(shù),函數(shù)

(1)當時,求的單調(diào)區(qū)間;

(2)設(shè),不等式的解集為,不等式的解集為,當時,是否存在正整數(shù),使得成立.若存在,試找出所有的m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)若,求直線以及曲線的直角坐標方程;

2)若直線與曲線交于兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項和為,則_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)恰有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案