【題目】(本小題滿分12分) 某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機抽取份試卷進行成績分析,得到數(shù)學(xué)成績頻率分布直方圖(如圖所示),其中成績在,的學(xué)生人數(shù)為6.
(Ⅰ)求直方圖中的值;
(Ⅱ)試估計所抽取的數(shù)學(xué)成績的平均數(shù);
(Ⅲ)試根據(jù)樣本估計“該校高一學(xué)生期末數(shù)學(xué)考試成績”的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝批發(fā)市場1-5月份的服裝銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷售量 (萬件) | 3 | 6 | 4 | 7 | 8 |
利潤 (萬元) | 19 | 34 | 26 | 41 | 46 |
(1)從這五個月的利潤中任選2個,分別記為, ,求事件“, 均不小于30”的概率;
(2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請根據(jù)前4個月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的利潤的估計數(shù)據(jù)與真實數(shù)據(jù)的誤差不超過2萬元,則認為得到的利潤的估計數(shù)據(jù)是理想的.請用表格中第5個月的數(shù)據(jù)檢驗由(2)中回歸方程所得的第5個月的利潤的估計數(shù)據(jù)是否理想.參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓C: + =1(a>b>0)的焦距為2,直線y=x被橢圓C截得的弦長為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點M(x0 , y0)是橢圓C上的動點,過原點O引兩條射線l1 , l2與圓M:(x﹣x0)2+(y﹣y0)2= 分別相切,且l1 , l2的斜率k1 , k2存在.
①試問k1k2是否定值?若是,求出該定值,若不是,說明理由;
②若射線l1 , l2與橢圓C分別交于點A,B,求|OA||OB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量M之間的關(guān)系為:,(其中a,b是實數(shù)),據(jù)統(tǒng)計,該種鳥類在靜止的時間其耗氧量為45個單位,而其耗氧量為105個單位時,其飛行速度為1m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2m/s,則其耗氧量至少要多少個單位。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結(jié)果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;
(3)為適應(yīng)市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個等級,如下表:
等級 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,45) | [45,55] |
按分層抽樣抽取10只,再隨機抽取3只品嘗,記X為抽到二等品的數(shù)量,求抽到二級品的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若BA,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)當x>0時,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC= .
(1)求證:B1C1∥平面BCD1;
(2)求證:平面A1ABB1⊥平面BCD1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com