(本小題滿分12分)

已知數(shù)列{an}滿足a1=0,a2=2,且對任意m、nN*都有

a2m-1a2n-1=2amn-1+2(mn)2

(Ⅰ)求a3,a5

(Ⅱ)設bna2n+1a2n-1(nN*),證明:{bn}是等差數(shù)列;

(Ⅲ)設cn=(an+1an)qn-1(q≠0,nN*),求數(shù)列{cn}的前n項和Sn.

本小題主要考查數(shù)列的基礎知識和化歸、分類整合等數(shù)學思想,以及推理論證、分析與解決問題的能力.

解:(1)由題意,零m=2,n-1,可得a3=2a2a1+2=6

       再令m=3,n=1,可得a5=2a3a1+8=20………………………………2分

(2)當nN *時,由已知(以n+2代替m)可得

a2n+3a2n-1=2a2n+1+8

于是[a2(n+1)+1a2(n+1)-1]-(a2n+1a2n-1)=8 

即  bn+1bn=8

所以{bn}是公差為8的等差數(shù)列………………………………………………5分

(3)由(1)(2)解答可知{bn}是首項為b1a3a1=6,公差為8的等差數(shù)列

bn=8n-2,即a2n+=1a2n-1=8n-2

另由已知(令m=1)可得

an-(n-1)2.

那么an+1an-2n+1 

           =-2n+1

           =2n

于是cn=2nqn-1.

q=1時,Sn=2+4+6+……+2nn(n+1)

q≠1時,Sn=2·q0+4·q1+6·q2+……+2n·qn-1.

兩邊同乘以q,可得

          qSn=2·q1+4·q2+6·q3+……+2n·qn.

上述兩式相減得

       (1-q)Sn=2(1+qq2+……+qn-1)-2nqn 

               =2·-2nqn

               =2·

所以Sn=2·

綜上所述,Sn…………………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案