已知曲線C的極坐標方程為,直線的參數(shù)方程為(t為參數(shù),) 
(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點,求直線被曲線C截得的線段AB的長

(1),曲線C是頂點為O(0,0),焦點為F(1,0)的拋物線;(2)8

解析試題分析:本題主要考查極坐標方程與直角坐標方程的互化,直線的參數(shù)方程,韋達定理等基礎知識,考查學生的轉化能力和計算能力 第一問,利用極坐標與直角坐標的互化公式,進行互化,并寫出圖形形狀;第二問,由直線的參數(shù)方程得出直線過,若還過,則,則直線的方程可進行轉化,由于直線與曲線C相交,所以兩方程聯(lián)立,得到關于t的方程,設出A,B點對應的參數(shù),所以,利用兩根之和,兩根之積進行轉化求解 
試題解析:(1)曲線C的直角坐標方程為,故曲線C是頂點為O(0,0),焦點為F(1,0)的拋物線;  5分
(2)直線的參數(shù)方程為( t為參數(shù),0≤) 故l經(jīng)過點(0,1);若直線經(jīng)過點(1,0),則
直線的參數(shù)方程為(t為參數(shù))
代入,得
設A、B對應的參數(shù)分別為,則
="8"           10分
考點:1極坐標與直角坐標的互化;2直線的參數(shù)方程;3直線與曲線的位置關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,圓的參數(shù)方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.求:
(1)圓的直角坐標方程;
(2)圓的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系xoy中,曲線C1的參數(shù)方程為(t為參數(shù)),P為C1上的動點,Q為線段OP的中點.
(1)求點Q的軌跡C2的方程;
(2)在以O為極點,x軸的正半軸為極軸(兩坐標系取相同的長度單位)的極坐標系中,N為曲線p=2sinθ上的動點,M為C2與x軸的交點,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

從原點O引直線交直線2x+4y-1=0于點M,P為OM上一點,已知OP·OM=1,求P點所在曲線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線C的極坐標方程為ρ=4cos θ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設曲線C與直線l相交于P,Q兩點,以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線l經(jīng)過點,傾斜角α=,圓C的極坐標方程為.
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標方程;
(2)設l與圓C相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設曲線經(jīng)過伸縮變換得到曲線,設為曲線上任一點,求的最小值,并求相應點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標系,曲線的參數(shù)方程為為參數(shù)).
(1) 求曲線的直角坐標方程以及曲線的普通方程;
(2) 設點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,曲線C1和C2的參數(shù)方程分別為(t為參數(shù)),求曲線C1和C2的交點坐標.

查看答案和解析>>

同步練習冊答案