已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)為曲線上任一點,求的最小值,并求相應(yīng)點的坐標.
(1),;
(2)當為()或時,的最小值為1.
解析試題分析:本題考查直角坐標系與極坐標系、普通方程與參數(shù)方程之間的轉(zhuǎn)化,考查學生的轉(zhuǎn)化能力和計算能力.第一問,利用互化公式將極坐標方程轉(zhuǎn)化為直角坐標方程,將參數(shù)方程轉(zhuǎn)化為普通方程;第二問,先通過已知得到的方程,利用的方程的特殊性設(shè)出點的坐標,代入到所求的表達式中,利用三角函數(shù)求最值的方法求表達式的最小值.
試題解析:(1)
4分
(2):
設(shè)為:
7分
所以當為()或
的最小值為1 10分
考點:1.極坐標與直角坐標之間的轉(zhuǎn)化;2.參數(shù)方程與普通方程之間的轉(zhuǎn)化.
科目:高中數(shù)學 來源: 題型:解答題
已知平面直角坐標系,以為極點,軸的非負半軸為極軸建立極坐標系,,曲線的參數(shù)方程為.點是曲線上兩點,點的極坐標分別為.
(1)寫出曲線的普通方程和極坐標方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線C的極坐標方程為,直線的參數(shù)方程為(t為參數(shù),)
(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點,求直線被曲線C截得的線段AB的長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓,直線,以O(shè)為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.
(1)將圓C和直線方程化為極坐標方程;
(2)P是上的點,射線OP交圓C于點R,又點Q在OP上且滿足,當點P在上移動時,求點Q軌跡的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xoy中,曲線C1的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心在極軸上,且經(jīng)過極點的圓.已知曲線C1上的點M(1,)對應(yīng)的參數(shù)j=,曲線C2過點D(1,).
(I)求曲線C1,C2的直角坐標方程;
(II)若點A(r1,q),B(r2,q+)在曲線C1上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標平面內(nèi),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程;
(2)求點到曲線上的點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標系的原點為極點,軸的正半軸為極軸的極坐標系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設(shè)曲線和曲線的交點、,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,在曲線上求一點,使它到直線的距離最小,并求出該點坐標和最小距離
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com