設(shè)為雙曲線的左右焦點,點P在雙曲線上,的平分線分線段的比為5∶1,則雙曲線的離心率的取值范圍是           .

試題分析:∵根據(jù)內(nèi)角平分線的性質(zhì)可得,再由雙曲線的定義可得5PF2-PF2=2a,PF2=,由于 PF2=≥c-a,∴≥c,.再由雙曲線的離心率大于1可得,1<e
點評:解決本題的關(guān)鍵是利用PF2=≥c-a構(gòu)造關(guān)于離心率的不等式
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

存在兩條直線與雙曲線相交于ABCD四點,若四邊形ABCD是正方形,則雙曲線的離心率的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的方程為左、右焦點分別為F1、F2,焦距為4,點M是橢圓C上一點,滿足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)分別作直線PA,PB交橢圓C于A,B兩點,設(shè)直線PA,PB的斜率分別為k1,k2,求證:直線AB過定點,并求出直線AB的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點在拋物線上,點是拋物線上的動點.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過點作拋物線的兩條切線,、分別為兩個切點,設(shè)點到直線的距離為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點是雙曲線上一點,雙曲線兩個焦點間的距離等于4,則該雙曲線方程是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與拋物線相切傾斜角為的直線L與x軸和y軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準(zhǔn)線所得的弦長為
A.4                B.2        C.2            D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線過定點,動點滿足,動點的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線交于兩點,以為切點分別作的切線,兩切線交于點.
①求證:;②若直線交于兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的一個頂點與兩個焦點構(gòu)成等邊三角形,則離心率e=________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A,B兩點在拋物線C:x2=4y上,點M(0,4)滿足=λ.
(1)求證:;
(2)設(shè)拋物線C過A、B兩點的切線交于點N.
(ⅰ)求證:點N在一條定直線上;    
(ⅱ)設(shè)4≤λ≤9,求直線MN在x軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案