19.直線l過點P(-1,2),且傾斜角為45°,則直線l的方程為( 。
A.x-y+1=0B.x-y-1=0C.x-y-3=0D.x-y+3=0

分析 根據(jù)直線的傾斜角求出斜率k,用點斜式寫出直線方程,再化為一般式即可.

解答 解:直線l過點P(-1,2),且傾斜角為45°,
則直線l的斜率為k=tan45°=1,
直線方程為y-2=1×(x+1),
即x-y+3=0.
故選:D.

點評 本題考查了直線的傾斜角與斜率以及點斜式方程和一般式方程的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.拋物線y2=2px的焦點為F,過點F斜率為k的直線交拋物線于A,B兩點,以AB為直徑的圓與直線k:x=-2相切,則p的值為( 。
A.2B.4C.6D.由k的值確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=-log3(9x)•log3$\frac{x}{3}$($\frac{1}{9}$≤x≤27).
(1)設t=log3x,求t的取值范圍
(2)求f(x)的最小值,并指出f(x)取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.證明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.學校體育隊共有5人,其中會打排球的有2人,會打乒乓球的有5人,現(xiàn)從中選2人.設ξ為選出的人中既會打排球又會打乒乓球的人數(shù),則隨機變量ξ的均值E(ξ)=( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在向南方雪災受災地區(qū)的捐款活動中,某慈善組織收到一筆10000元的匿名捐款,該組織經(jīng)過調(diào)查,發(fā)現(xiàn)是甲、乙、丙、丁四個人當中的某一個捐的.慈善組織成員對他們進行求證時,發(fā)現(xiàn)他們的說法互相矛盾.
甲說:對不起,這錢不是我捐的
乙說:我估計這錢肯定是丁捐的
丙說:乙的收入最高,肯定是乙捐的
丁說:乙的說法沒有任何根據(jù)
假定四人中只有一個說了真話,那么真正的捐款者是甲(僅一人).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知PA垂直于以AB為直徑的ΘO所在的平面,C是ΘO上異于A,B的動點,PA=1,AB=2,當三棱錐P-ABC取得最大體積時,求:
(1)PC與AB所成角的大;
(2)PA與面PCB所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.計算C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1,可以采用以下方法:
構造恒等式:C${\;}_{n}^{0}$+C${\;}_{n}^{1}$2x+C${\;}_{n}^{2}$22x2+…+C${\;}_{n}^{n}$2nxn=(1+2x)n
兩邊對x導,得C${\;}_{n}^{1}$2+2•C${\;}_{n}^{2}$22x+••+n•C${\;}_{n}^{n}$2nxn-1=2n(1+2x)n-1
在上式中令x=1,得C${\;}_{n}^{1}$+2•C${\;}_{n}^{2}$2+…+n•C${\;}_{n}^{n}$2n-1=n(1+2)n-1=n•3n-1
類比上述計算方法,計算C${\;}_{n}^{1}$2+22C${\;}_{n}^{2}$22+32C${\;}_{n}^{3}$23+…+n2C${\;}_{n}^{n}$2n=2n(2n+1)3n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=2|$\overrightarrow b$|≠0,且函數(shù)在f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}$$+(\overrightarrow a•\overrightarrow b)x$在R上有極值,則向量$\overrightarrow a$,$\overrightarrow b$的夾角的取值范圍是($\frac{π}{3}$,π).

查看答案和解析>>

同步練習冊答案