分析 由均值不等式先推導(dǎo)出a4+b4+c4≥a2b2+b2c2+a2c2,再由a2b2+b2c2≥2ab2c;b2c2+a2c2≥2abc2;a2b2+a2c2≥2a2bc,能證明a4+b4+c4≥a2b2+b2c2+c2a2≥abc(a+b+c).
解答 證明:∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2a2c2
∴2(a4+b4+c4)≥2(a2b2+b2c2+a2c2)
即a4+b4+c4≥a2b2+b2c2+a2c2
又a2b2+b2c2≥2ab2c;b2c2+a2c2≥2abc2;a2b2+a2c2≥2a2bc
∴2(a2b2+b2c2+a2c2)≥2(a2bc+ab2c+abc2)
即a2b2+b2c2+a2c2≥abc(a+b+c)
∴a4+b4+c4≥a2b2+b2c2+c2a2≥abc(a+b+c).
點評 本題考查不等式的證明,是基礎(chǔ)題,解題時要認真審題,注意均值不等式的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)和分別是上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
A.是偶函數(shù) B.是奇函數(shù)
C. 是偶函數(shù) D.是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | 1 | 2 | 3 |
P | 0.5 | x | y |
A. | $\frac{7}{32}$ | B. | $\frac{9}{32}$ | C. | $\frac{33}{64}$ | D. | $\frac{55}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y+1=0 | B. | x-y-1=0 | C. | x-y-3=0 | D. | x-y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com