【題目】【2017屆江西省南昌市高三第一次模擬考試數(shù)學(xué)(理)】已知函數(shù)(,是自然對數(shù)的底數(shù)).
(1)若是上的單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,證明:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析: (Ⅰ)先將單調(diào)性轉(zhuǎn)化為不等式恒成立:當(dāng)時,函數(shù)恒成立,再變量分離轉(zhuǎn)化為對應(yīng)函數(shù)最值:的最小值,最后根據(jù)導(dǎo)數(shù)求函數(shù)最值,(Ⅱ)利用二次求導(dǎo),確定導(dǎo)函數(shù)為單調(diào)遞增函數(shù),再利用零點存在定理確定導(dǎo)函數(shù)有且僅有一個零點,根據(jù)導(dǎo)函數(shù)符號變化規(guī)律得函數(shù)在此零點(極小值點)取最小值.最后利用導(dǎo)函數(shù)零點表示函數(shù)最小值,并根據(jù)導(dǎo)函數(shù)零點取值范圍,利用導(dǎo)數(shù)方法確定最小值函數(shù)的值域.
試題解析: (Ⅰ),
依題意:當(dāng)時,函數(shù)恒成立,即恒成立,
記,則,
所以在上單調(diào)遞增,所以,所以,即;
(Ⅱ)因為,所以是上的增函數(shù),
又, ,所以存在使得
且當(dāng)時,當(dāng)時,所以的取值范圍是.
又當(dāng),,當(dāng)時,,
所以當(dāng)時,.且有
∴.
記,則,
所以,即最小值的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺體體積公式:,其中分別為臺體上、下底面面積,為臺體高.
(Ⅰ)證明:直線 平面;
(Ⅱ)若,,,三棱錐的體積,求該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓上每一點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l: 與C的交點為P1,P2,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1 P2的中點且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(1)求數(shù)列{bn}的通項公式;
(2)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列各式的值:
(1)2log32-log3+log38-5;
(2)[(1-log63)2+log62·log618]÷log64.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司擬投資100萬元,有兩種投資方案可供選擇:一種是年利率為10%,按單利計算,5年后收回本金和利息;另一種是年利率為9%,按每年復(fù)利一次計算,5年后收回本金和利息.哪一種投資更有利?這種投資比另一種投資5年可多得利息多少元?(結(jié)果精確到0.01萬元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過點
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有極值,求實數(shù)的取值范圍;
(Ⅱ)當(dāng)有兩個極值點(記為和)時,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com