已知直線l夾在坐標(biāo)軸間的線段為橢圓的長軸,且此橢圓的離心率為0.8,求此橢圓方程.

答案:
解析:

直線l與兩坐標(biāo)軸交點(diǎn)為A(6,0)B(0,-8)

  2a=|AB|=10a=5,e==0.8,∴ c=4

  橢圓中心C即是AB的中點(diǎn)(3,-4),橢圓另一對稱軸l′的方程為:y+4=-(x-3),

  即3x+4y+7=0

  設(shè)橢圓的右上方準(zhǔn)線l1的方程為:3x+4y+c1=0

  ∵ ll1,∴ c1=

  ∴ 準(zhǔn)線l1的方程為:3x+4y=0

  利用平面幾何比例線段可求出橢圓右上方焦點(diǎn)F1(,),根據(jù)橢圓定義2,

  可得所求橢圓方程為:

  

  化簡,得481x2-384xy+369y2-4422x+4104y+9216=0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l在兩坐標(biāo)軸上的截距相等,且經(jīng)過點(diǎn)A(2,2).求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(2,1),且在兩坐標(biāo)軸上的截距互為相反數(shù),則直線l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:2x-y+1=0
①求過點(diǎn)P(3,1)且與l平行的直線方程;
②求過點(diǎn)P(3,1)且在兩坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知直線l夾在坐標(biāo)軸間的線段為橢圓的長軸,且此橢圓的離心率為0.8,求此橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案