12.函數(shù)y=f(x)圖象上不同兩點(diǎn)M(x1,y1),N(x2,y2)處的切線的斜率分別是kM,kN,規(guī)定φ(M,N)=$\frac{{|{{k_M}-{k_N}}|}}{{|{MN}|}}$(|MN|為線段MN的長(zhǎng)度)叫做曲線y=f(x)在點(diǎn)M與點(diǎn)N之間的“彎曲度”.①函數(shù)f(x)=x3+1圖象上兩點(diǎn)M與點(diǎn)N的橫坐標(biāo)分別為1和2,φ(M,N)=$\frac{{9\sqrt{2}}}{10}$;
②設(shè)曲線f(x)=x3+2上不同兩點(diǎn)M(x1,y1),N(x2,y2),且x1•x2=1,則φ(M,N)的取值范圍是(0,$\frac{3\sqrt{10}}{5}$).

分析 對(duì)于①,由y=x3+1,得y′=3x2,則kM=3,kN=12,則|kM-kN|=9,y1=2,y2=9,則|MN|=$\sqrt{(2-1)^{2}+(9-2)^{2}}$=5$\sqrt{2}$,即可求出φ(M,N)=$\frac{9}{5\sqrt{2}}$=$\frac{{9\sqrt{2}}}{10}$;
對(duì)于②,利用定義,再換元,即可得出結(jié)論.

解答 解:對(duì)于①,由y=x3+1,得y′=3x2,
則kM=3,kN=12,則|kM-kN|=9,y1=2,y2=9,則|MN|=$\sqrt{(2-1)^{2}+(9-2)^{2}}$=5$\sqrt{2}$,
φ(M,N)=$\frac{9}{5\sqrt{2}}$=$\frac{{9\sqrt{2}}}{10}$;
②曲線f(x)=x3+2,則f′(x)=3x2,
設(shè)x1+x2=t(|t|>2),則φ(M,N)=$\frac{|3{{x}_{1}}^{2}-3{{x}_{2}}^{2}|}{\sqrt{({x}_{2}-{x}_{1})^{2}+({{x}_{2}}^{3}-{{x}_{1}}^{3})^{2}}}$=$\frac{3|t|}{\sqrt{1+({t}^{2}-1)^{2}}}$=$\frac{3}{\sqrt{{t}^{2}+\frac{2}{{t}^{2}}-2}}$,
∴0<φ(M,N)<$\frac{3\sqrt{10}}{5}$.
故答案為$\frac{{9\sqrt{2}}}{10}$,(0,$\frac{3\sqrt{10}}{5}$).

點(diǎn)評(píng) 本題考查新定義,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知兩個(gè)單位向量${\vec e_1},{\vec e_2}$的夾角為$\frac{π}{3}$,則$|{\vec e_1}-2{\vec e_2}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知直線l:mx+y+$\sqrt{3}$=0.與圓(x+1)2+y2=2相交,弦長(zhǎng)為2,則m=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx-1|,x>0}\\{-{x}^{2}-2x+2,x≤0}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d)且a<b<c<d,給出下列三個(gè)結(jié)論:
①abcd∈(0,e2];
②a+b+c+d∈(e3+$\frac{1}{e}$-2,e4+$\frac{1}{{e}^{2}}$-2];
③已知關(guān)于x的方程f(x)+(-1)kx-t=0恰有三個(gè)不同實(shí)根,若k為偶數(shù),則t∈[2,$\frac{9}{4}$];若k為奇數(shù),則t=[2,$\frac{17}{4}$];其中正確的結(jié)論有( 。﹤(gè).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.《九章算術(shù)》中有一個(gè)“兩鼠穿墻”問(wèn)題:“今有垣(墻,讀音)厚五尺,兩鼠對(duì)穿,大鼠日(第一天)一尺,小鼠也日(第一天)一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天減半).問(wèn)何日相逢,各穿幾何?”
在兩鼠“相逢”時(shí),大鼠與小鼠“穿墻”的“進(jìn)度”之比是59:26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.定義在R上的函數(shù)y=f(x)滿足f(x)•f(x+5)=3,f(1)=2,則f(2016)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖是某幾何體的三視圖,則該幾何體的表面積為63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-alnx(a∈R).
(1)若函數(shù)f(x)在(0,+∞)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)討論方程f(x)=0解的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,求|$\overrightarrow{a}$+$\overrightarrow$|,|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

同步練習(xí)冊(cè)答案