分析 利用直線l:mx+y+$\sqrt{3}$=0與圓(x+1)2+y2=2相交,弦長(zhǎng)為2,得出圓心到直線l:mx+y+$\sqrt{3}$=0的距離為$\frac{|-m+\sqrt{3}|}{\sqrt{{m}^{2}+1}}$=1,即可求出m.
解答 解:圓(x+1)2+y2=2的圓心坐標(biāo)為(-1,0),半徑為$\sqrt{2}$,則
∵直線l:mx+y+$\sqrt{3}$=0與圓(x+1)2+y2=2相交,弦長(zhǎng)為2,
∴圓心到直線l:mx+y+$\sqrt{3}$=0的距離為$\frac{|-m+\sqrt{3}|}{\sqrt{{m}^{2}+1}}$=1
∴m=$\frac{\sqrt{3}}{3}$,
故答案為:$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題重點(diǎn)考查直線與圓相交,考查弦長(zhǎng)問題,解題的關(guān)鍵是充分利用圓的特性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | [1,+∞) | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com