【題目】在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以BD的中點(diǎn)O為球心,BD為直徑的球面交PD于點(diǎn)M.
(1)求證:平面ABM⊥平面PCD;
(2)求直線PC與平面ABM所成的角的正切值.
【答案】(1)見解析;(2)2
【解析】
(1)先證明PD⊥平面ABM,再證明平面ABM⊥平面PCD.(2) 設(shè)平面ABM與PC交于點(diǎn)N,連接BN,MN,再證明∠PNM就是PC與平面ABM所成的角,再解三角形求得直線PC與平面ABM所成的角的正切值.
(1)證明:依題設(shè),M在以BD為直徑的球面上,則BM⊥PD
因?yàn)?/span>PA⊥平面ABCD,則PA⊥AB,又AB⊥AD,所以AB⊥平面PAD,則AB⊥PD,
因此有PD⊥平面ABM,
所以平面ABM⊥平面PCD.
(2)設(shè)平面ABM與PC交于點(diǎn)N,連接BN,MN,
因?yàn)?/span>AB∥CD,所以AB∥平面PCD,則AB∥MN∥CD.
由(1)知,PD⊥平面ABM,則MN是PN在平面ABM上的射影,
所以∠PNM就是PC與平面ABM所成的角,
且∠PNM=∠PCD,tan∠PNM=tan∠PCD==2.
即所求角的正切值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序( 。
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)exf(x)(e≈2.71828…是自然對數(shù)的底數(shù))在f(x)的定義域上單調(diào)遞增,則稱函數(shù)f(x)具有M性質(zhì).下列函數(shù)中所有具有M性質(zhì)的函數(shù)的序號為 .
①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , ,若 ,且S11=143,數(shù)列{bn}的前n項(xiàng)和為Tn , 且滿足 .
(1)求數(shù)列{an}的通項(xiàng)公式及數(shù)列 的前n項(xiàng)和Mn
(2)是否存在非零實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+asinx在(﹣∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)在拋物線上,過點(diǎn)作垂直于軸,垂足為,設(shè).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)點(diǎn),過點(diǎn)的直線交軌跡于兩點(diǎn),直線的斜率分別為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機(jī)抽測了20位同學(xué),得到如下數(shù)據(jù):
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高x(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
腳長y(碼) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
序號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高x(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
腳長y(碼) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(Ⅰ)請根據(jù)“序號為5的倍數(shù)”的幾組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
(Ⅱ)若“身高大于175厘米”為“高個(gè)”,“身高小于等于175厘米”的為“非高個(gè)”;“腳長大于42碼”為“大碼”,“腳長小于等于42碼”的為“非大碼”.請根據(jù)上表數(shù)據(jù)完成2×2列聯(lián)表:并根據(jù)列聯(lián)表中數(shù)據(jù)說明能有多大的可靠性認(rèn)為腳的大小與身高之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個(gè)標(biāo)有1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個(gè)數(shù)字的乘積為被抽取人的序號,求:抽到“無效序號(超過20號)”的概率.
附表及公式:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com