如圖,在四棱錐中,,,且,E是PC的中點.
(1)證明:;
(2)證明:;
(1)見解析;(Ⅱ)證明:見解析。
【解析】
試題分析:(1)證明線面垂直根據(jù)判定定理證明即可.
(2)證明線面垂直利用判定定理證明,再由,可得AC=PA.是PC的中點,可證得,問題得證.
(1).,平面.
而平面,.……5分
(Ⅱ)證明:由,,可得.
是的中點,.
由(1)知,,且,所以平面.
而平面,.
底面在底面內(nèi)的射影是,,.
又,綜上得平面.……12分
考點:線線,線面垂直的判定及性質(zhì).
點評:掌握線線,線面,面面平行與垂直的判定定理及性質(zhì)定理是利用傳統(tǒng)方法求解此類問題的關(guān)鍵,同時還要強化畫圖識圖能力的提高,培養(yǎng)自己的空間想象能力,才能真正解決此類問題.
科目:高中數(shù)學 來源: 題型:
如圖,在四棱錐中,底面是矩形,平面,,.以的中點為球心、為直徑的球面交于點.
(1)求證:平面⊥平面;
(2)求直線與平面所成的角;w.w.w.k.s.5.u.c.o.m
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆四川省成都高新區(qū)高三10月統(tǒng)一檢測文科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點.
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆吉林省白山市高三摸底考試理科數(shù)學試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面為菱形,,為的中點。
(1)若,求證:平面;
(2)點在線段上,,試確定的值,使;
查看答案和解析>>
科目:高中數(shù)學 來源:大連二十三中學2011學年度高一年級期末測試試卷數(shù)學 題型:解答題
(12分)如圖,在四棱錐中,底面為直角梯形,,,平面⊥底面,為AD的中點,是棱上的點,,.(1)若點是棱的中點,求證:
// 平面;(2)求證:平面⊥平面。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com