如圖,在四棱錐中,底面為菱形,的中點(diǎn)。

(1)若,求證:平面;

(2)點(diǎn)在線段上,,試確定的值,使;

 

【答案】

(1)證明詳見解析;(2)

【解析】

試題分析:(1)由已知條件可證AD⊥BQ,AD⊥PQ,根據(jù)平面與平面垂直的判定定理即可求證平面PQB⊥平面PAD.

(2)連結(jié)AC交BQ于N,由AQ∥BC,可證△ANQ∽△BNC,即得,由直線與平面平行的性質(zhì),可證PA∥MN,即得,所以PM=PC,即t=.

試題解析:(1)連BD,四邊形ABCD菱形,  ∵AD⊥AB,  ∠BAD=60°

△ABD為正三角形, Q為AD中點(diǎn), ∴AD⊥BQ

∵PA=PD,Q為AD的中點(diǎn),AD⊥PQ

又BQ∩PQ=Q  ∴AD⊥平面PQB, AD平面PAD

∴平面PQB⊥平面PAD; 

 (2)當(dāng)時(shí),平面 

下面證明,若平面,連 

可得,, 

平面,平面,平面平面, 

   即:  

考點(diǎn):1.平面與平面垂直的判定;2.直線與平面平行的性質(zhì)及直線與直線平行的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面;
(2)求異面直線所成的角的大小;
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,,平面,的中點(diǎn),的中點(diǎn).    

(Ⅰ) 求證:∥平面

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大;

(3)求二面角的大。

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱,中點(diǎn),作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(Ⅰ)當(dāng)時(shí),求證平面

(Ⅱ)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習(xí)冊答案