(本題14分)口袋內(nèi)有)個大小相同的球,其中有3個紅球和個白球.已知從
口袋中隨機取出一個球是紅球的概率是,且。若有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次取球中恰好取到兩次紅球的概率大于。
(Ⅰ)求;
(Ⅱ)不放回地從口袋中取球(每次只取一個球),取到白球時即停止取球,記為第一次取到白球時的取球次數(shù),求的分布列和期望。
(1)  (2)

試題分析:解:(I)由題設知,,
因為所以不等式可化為,
解不等式得,,即
又因為,所以,即,
所以,所以,所以.   ………………7分
(II)可取1,2,3 ,4

的分布列為

1
2
3
4
p




.   ……………14分
點評:對于概率試題的求解,主要是能對于古典概型的事件空間準確求解,同時能根據(jù)各個概率的取值,得到分布列,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某項考試按科目A、科目B依次進行,只有當科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為.假設各次考試成績合格與否均互不影響.
(1)求他不需要補考就可獲得證書的概率;
(2)在這項考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數(shù)為,求 的分布列及數(shù)學期望E.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

樣本中共有5個個體,其值分別為.若該樣本的平均值為1,則樣本方差為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某人上樓梯,每步上一階的概率為,每步上二階的概率為,設該人從臺階下的平臺開始出發(fā),到達第階的概率為.
(1)求;;
(2)該人共走了5步,求該人這5步共上的階數(shù)ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)一廠家向用戶提供的一箱產(chǎn)品共件,其中有件次品,用戶先對產(chǎn)品進行抽檢以決定是否接收.抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查(取出的產(chǎn)品不放回箱子),若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品;若前三次中一抽查到次品就立即停止抽檢,并且用戶拒絕接收這箱產(chǎn)品.
(Ⅰ)求這箱產(chǎn)品被用戶接收的概率;
(Ⅱ)記抽檢的產(chǎn)品件數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在一次數(shù)學考試中共有8道選擇題,每道選擇題都有4個選項,其中有且只有一個選項是正確的.某考生有5道題已選對正確答案,其余題中有兩道只能分別判斷2個選項是錯誤的,還有1道題因不理解題意只好亂猜.
(1) 求該考生8道題全答對的概率;
(2)若評分標準規(guī)定:“每題只選一個選項,選對得5分,不選或選錯得0分”,求該考生所得分數(shù)的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

盒中有6只燈泡,其中2只次品,4只正品,有放回地從中任取兩次,每次取一只,試求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
現(xiàn)有兩個項目,投資項目萬元,一年后獲得的利潤為隨機變量(萬元),根據(jù)市場分析,的分布列為:

投資項目萬元,一年后獲得的利潤(萬元)與項目產(chǎn)品價格的調(diào)整(價格上調(diào)或下調(diào))有關, 已知項目產(chǎn)品價格在一年內(nèi)進行次獨立的調(diào)整,且在每次調(diào)整中價格下調(diào)的概率都是.
經(jīng)專家測算評估項目產(chǎn)品價格的下調(diào)與一年后獲得相應利潤的關系如下表:

(Ⅰ)求的方差
(Ⅱ)求的分布列;
(Ⅲ)若,根據(jù)投資獲得利潤的差異,你愿意選擇投資哪個項目?
(參考數(shù)據(jù):).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列是隨機變量ξ的分布列







x
則隨機變量ξ的數(shù)學期望是
A.0.44                B.0.52            C.1.40        D.條件不足

查看答案和解析>>

同步練習冊答案