【題目】已知函數(shù)

(1)當時,求不等式的解集.

(2)討論不等式的解集.

【答案】(1);(2)詳見解析.

【解析】

時,,則由,據(jù)此確定不等式的解集即可;

,即不等式的解集為

由題意可得,若,不等式的解集可解,

,則不等式等價為,令,換元后分類討論求解不等式的解集即可.

時,,

,得,即,即不等式的解集為

,

,

,則不等式等價為,得,

,則不等式等價為

,則不等式等價為,

,拋物線開口向上,有兩個零點2,

,則,此時不等式的解為,即,得,

,則,此時不等式的無解,

,則,此時不等式的解為,即,得

,拋物線開口向下,有兩個零點2,,且,

此時不等式的解為,即,得,

綜上若,不等式的解集為,

,不等式的解集為,

,不等式的解集為

,不等式的解集為空集,

,不等式的解集為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】說明:請考生在(A)、(B)兩個小題中任選一題作答。

A)已知函數(shù);

(1)求的零點;

(2)若有三個零點,求實數(shù)的取值范圍.

B)已知函數(shù)

(1)求的零點;

(2)若,有4個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校為調查學生喜歡“應用統(tǒng)計”課程是否與性別有關,隨機抽取了選修課程的60名學生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

合計

男生

20

10

30

女生

10

20

30

合計

30

30

60

(1)判斷是否有99.5%的把握認為喜歡“應用統(tǒng)計”課程與性別有關?

(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學生中抽取6名學生作進一步調查,將這6名學生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)

圖象的兩相鄰對稱軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長到原來的倍,縱坐標不變,得到函數(shù)的圖象,求的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ x2 , g(x)= x2+x,m∈R,令F(x)=f(x)+g(x). (Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)若關于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=﹣1,且正實數(shù)x1 , x2滿足F(x1)=﹣F(x2),求證:x1+x2 ﹣1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:數(shù)列{an}中, =n,a2=6,n∈N+
(1)求a1 , a3 , a4
(2)猜想an的表達式并給出證明;
(3)記:Sn= + +…+ ,證明:Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足 an+2﹣an+1=an+1﹣an , n∈N* , 且a5= 若函數(shù)f(x)=sin2x+2cos2 ,記yn=f(an),則數(shù)列{yn}的前9項和為(
A.O
B.﹣9
C.9
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設為實數(shù),函數(shù), .

1)求的單調區(qū)間與極值;

2)求證:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調遞增,求實數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣ 圖象的切線,求a+b的最小值;
(3)當b=0時,若f(x)與g(x)的圖象有兩個交點A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 . (取e為2.8,取ln2為0.7,取 為1.4)

查看答案和解析>>

同步練習冊答案