觀察下列等式:C21=C11+C10C31=C21+C20C32=C22+C21C41=C31+C30C42=C32+C31C43=C33+C32…,由以上等式推測(cè)到一個(gè)一般性的結(jié)論:對(duì)任意的n,r∈N+(n>r),Cnr=________.

Cn-1r+Cn-1r-1
分析:仔細(xì)觀察題設(shè)條件,我們能夠發(fā)現(xiàn):每一個(gè)組合數(shù)都能拆分成兩個(gè)組合數(shù)之和,且這兩拆分后的組合數(shù)的下標(biāo)比拆分前組合數(shù)的下標(biāo)小1,拆分后的兩個(gè)組合數(shù)的上標(biāo)之和恰好等于拆分前組合數(shù)的上標(biāo),從中總結(jié)規(guī)律后,能夠得到Cnr的表達(dá)式.
解答:∵C21=C11+C10,
C31=C21+C20,
C32=C22+C21
C41=C31+C30,
C42=C32+C31,
C43=C33+C32,

∴Cnr=Cn-1r+Cn-1r-1
故答案為:Cn-1r+Cn-1r-1
點(diǎn)評(píng):本題考查歸納推理的靈活運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意觀察,善于總結(jié).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:C21=C11+C10C31=C21+C20C32=C22+C21C41=C31+C30C42=C32+C31C43=C33+C32…,由以上等式推測(cè)到一個(gè)一般性的結(jié)論:對(duì)任意的n,r∈N+(n>r),Cnr=
Cn-1r+Cn-1r-1
Cn-1r+Cn-1r-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年浙江省溫州市八校聯(lián)考高三(上)入學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

觀察下列等式:C21=C11+C1C31=C21+C2C32=C22+C21C41=C31+C3C42=C32+C31C43=C33+C32…,由以上等式推測(cè)到一個(gè)一般性的結(jié)論:對(duì)任意的n,r∈N+(n>r),Cnr=   

查看答案和解析>>

同步練習(xí)冊(cè)答案