下列函數(shù)是奇函數(shù)的是( )

A. B.

C. D.

C

【解析】

試題分析:根據(jù)函數(shù)奇偶性的定義,可得A、B兩項(xiàng)為偶函數(shù),D為非奇非偶函數(shù),只有C項(xiàng)為奇函數(shù).

考點(diǎn):應(yīng)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖北省襄陽(yáng)市等高二12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān),某轎車(chē)制造廠生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車(chē)中隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時(shí)間

轎車(chē)數(shù)量(輛)

2

3

45

5

45

每輛利潤(rùn)(萬(wàn)元)

1

2

3

將頻率視為概率,解答下列問(wèn)題:

(1)從該廠生產(chǎn)的甲品牌轎車(chē)中隨機(jī)抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

(2)若該廠生產(chǎn)的轎車(chē)均能售出,記生產(chǎn)一輛甲品牌轎車(chē)的利潤(rùn)為,生產(chǎn)一輛乙品牌轎車(chē)的利潤(rùn)為,分別求的分布列;

(3)該廠預(yù)計(jì)今后這兩種品牌轎車(chē)銷(xiāo)量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車(chē),若從生產(chǎn)一輛品牌轎車(chē)的利潤(rùn)均值的角度考慮,你認(rèn)為應(yīng)該生產(chǎn)哪種品牌的轎車(chē)?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省東莞市三校高一上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)已知集合,, 全集,求:

(1); (2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省天水市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知為定義在 上的奇函數(shù),當(dāng)時(shí),函數(shù)解析式為

(Ⅰ)求上的解析式;

(Ⅱ)求上的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省天水市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知四棱錐P-ABCD,底面ABCD是的菱形,又,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).

(Ⅰ)證明:DN//平面PMB;

(Ⅱ)證明:平面PMB平面PAD;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,動(dòng)點(diǎn)在正方體的對(duì)角線上,過(guò)點(diǎn)作垂直于平面的直線,與正方體表面相交于.設(shè),,則函數(shù)的圖象大致是 ( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年甘肅省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

若橢圓與直線交于A,B兩點(diǎn),若,則過(guò)原點(diǎn)與線段AB的中點(diǎn)M的連線的斜率為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年蘇教版必修三 3.4互斥事件練習(xí)卷(解析版) 題型:?????

(2014•鄭州一模)將一枚質(zhì)地均勻的硬幣連擲4次,出現(xiàn)“至少兩次正面向上”的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案