(文科做)在平面直角坐標系中,拋物線的頂點是坐標原點且經(jīng)過點,其焦點軸上,求拋物線方程.

 

【答案】

【解析】解:由題知,設拋物線的方程為(p>0)

        ∵過點   ∴4=2p*2     p=1

        ∴拋物線的方程是

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•鹽城模擬)(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F(xiàn)2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省佛山市南海區(qū)高三(上)入學摸底數(shù)學試卷(文科)(解析版) 題型:解答題

(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F(xiàn)2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省鹽城市東臺中學高三(上)數(shù)學階段練習(一)(解析版) 題型:解答題

(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F(xiàn)2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省鹽城市高三摸底數(shù)學試卷(解析版) 題型:解答題

(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F(xiàn)2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F(xiàn)2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

同步練習冊答案