精英家教網 > 高中數學 > 題目詳情
(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

【答案】分析:(Ⅰ)設橢圓的方程,根據當t=3時,PQ中點為(0,3),所以b=3,利用F1(-4,0),F2(4,0),即可求得橢圓的標準方程;
(Ⅱ)①確定直線AF1:y=2x+8;AF2:y=-2x+8,求得P(,t),Q(,t),R(4-t,0),利用待定系數法,設△PRF1的外接圓C的方程為x2+y2+Dx+Ey+F=0,進而可確定圓心坐標,即可證得結論;
②由①可得圓C的方程,分離參數,分別令其為0,即可求得定點的坐標.
解答:解:(Ⅰ)設橢圓的方程為,當t=3時,PQ中點為(0,3),所以b=3
∵a2-b2=16,∴a2=25
∴橢圓的標準方程為;
(Ⅱ)①證明:直線AF1:y=2x+8;AF2:y=-2x+8;
所以可得P(,t),Q(,t)
∵直線QR∥AF1交F1F2于點R,∴R(4-t,0)
設△PRF1的外接圓C的方程為x2+y2+Dx+Ey+F=0,則


∴圓心坐標為
∴圓心C在定直線7x+4y+8=0上;
②由①可得圓C的方程為:x2+y2+tx+(4-)y+4t-16=0
整理可得(x2+y2+4y-16)+t(x-y+4)=0
∴x2+y2+4y-16=0,且x-y+4=0
聯(lián)立此兩方程解得x=,y=或x=-4,y=0
∴圓C恒過異于點F1的一個定點,該點的坐標為(,).
點評:本題考查圓錐曲線的綜合,考查橢圓的標準方程,考查圓的方程,考查恒過定點問題,解題的關鍵是利用待定系數法,分離參數法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•鹽城模擬)(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省鹽城市東臺中學高三(上)數學階段練習(一)(解析版) 題型:解答題

(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省鹽城市高三摸底數學試卷(解析版) 題型:解答題

(本題文科學生做)如圖,在平面直角坐標系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直線y=t(0<t<8)與線段AF1、AF2分別交于點P、Q.
(Ⅰ)當t=3時,求以F1,F2為焦點,且過PQ中點的橢圓的標準方程;
(Ⅱ)過點Q作直線QR∥AF1交F1F2于點R,記△PRF1的外接圓為圓C.
①求證:圓心C在定直線7x+4y+8=0上;
②圓C是否恒過異于點F1的一個定點?若過,求出該點的坐標;若不過,請說明理由.

查看答案和解析>>

同步練習冊答案