(本小題滿分12分)如圖:在三棱錐中,已知點、分別為棱、的中點.

    (1)求證:∥平面;

    (2)若,,求證:平面⊥平面

 

【答案】

(Ⅰ)見解析;(Ⅱ)見解析。

【解析】本題主要考查了直線與平面平行的判定,以及面面的垂直的判定,同時考查空間想象能力、推理論證能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于基礎題.

(Ⅰ)欲證EF∥平面ABC,根據(jù)直線與平面平行的判定定理可知只需證EF與平面ABC內(nèi)一直線平行,而EF是△SAC的中位線,則EF∥AC.又EF⊄平面ABC,AC⊂平面ABC,滿足定理所需條件;

(Ⅱ)欲證平面SBD⊥平面ABC,根據(jù)面面垂直的判定定理可知在平面ABC內(nèi)一直線與平面SBD垂直,而SD⊥AC,BD⊥AC,又SD∩DB=D,滿足線面垂直的判定定理,則AC⊥平面SBD,又AC⊂平面ABC,從而得到結(jié)論

證明:(Ⅰ)∵的中位線,∴.

又∵平面,平面,∴∥平面

(Ⅱ)∵,,∴.∵,,∴.

又∵平面,平面,,∴平面,

又∵平面,∴平面

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案