將圓x2+y2=8上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?span dealflag="1" mathtag="math" >
2
2
倍,得到曲線C.設(shè)直線l與曲線C相交于A、B兩點(diǎn),且M,其中M是曲線C與y軸正半軸的交點(diǎn).
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:直線l的縱截距為定值.
(Ⅰ)設(shè)所求曲線C上的任一點(diǎn)坐標(biāo)為(x,y),圓x2+y2=8上的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(x',y'),由題意可得
x′=x
y′=
2
y
,…(3分)
∵x'2+y'2=8,x2+2y2=8,即∴曲線C的方程為
x2
8
+
y2
4
=1
.              …(5分)
(Ⅱ)∵M(jìn)(0,2),顯然直線l與x軸不垂直,設(shè)直線l:y=kx+m,與橢圓C:
x2
8
+
y2
4
=1
相交于A(x1,y1),B(x2,y2),
y=kx+m
x2
8
+
y2
4
=1
得(2k2+1)x2+4kmx+2m2-8=0,…(7分)
x1+x2=
-4km
2k2+1
,  x1x2=
2m2-8
2k2+1
,…(8分)
∴(x1,y1-2)•(x2,y2-2)=0,…(10分)
即:x1x2+(y1-2)(y2-2)=0?x1x2+y1y2-2(y1+y2)+4=0,∴x1x2+(kx1+m)(kx2+m)-2(kx1+m+kx2+m)+4=0,
整理得:(k2+1)x1x2+k(m-2)(x1+x2)+(m-2)2=0,…(12分)
(k2+1)
2m2-8
2k2+1
+k(m-2)
-4km
2k2+1
+(m-2)2=0

∵m≠2,2(k2+1)(m+2)-4k2m+(2k2+1)(m-2)=0,
展開得:3m+2=0,∴m=-
2
3
,∴直線l的縱截距為定值-
2
3
.                    …(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-4:坐標(biāo)系與參數(shù)方程
將圓x2+y2=4上各點(diǎn)的縱坐標(biāo)壓縮至原來的
12
,所得曲線記作C;將直線3x-2y-8=0繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l.
(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳一模)將圓x2+y2=8上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?span id="4qt44qo" class="MathJye">
2
2
倍,得到曲線C.設(shè)直線l與曲線C相交于A、B兩點(diǎn),且M,其中M是曲線C與y軸正半軸的交點(diǎn).
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:直線l的縱截距為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年新疆烏魯木齊市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
將圓x2+y2=4上各點(diǎn)的縱坐標(biāo)壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l.
(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年廣東省深圳市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

將圓x2+y2=8上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183128917469871/SYS201310241831289174698017_ST/0.png">倍,得到曲線C.設(shè)直線l與曲線C相交于A、B兩點(diǎn),且M,其中M是曲線C與y軸正半軸的交點(diǎn).
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:直線l的縱截距為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案