橢圓)的兩焦點分別為,以為邊作正三角形,若正三角形的第三個頂點恰好是橢圓短軸的一個端點,則橢圓的離心率為  (     )  

A、                 B、              C、             D. 

 

【答案】

A

【解析】

試題分析:設短軸端點為A,所以

考點:求離心率

點評:求離心率首要找的齊次關系式

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓
x2
2
+
y2
4
=1
兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足
PF1
PF2
=1,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)求直線AB的斜率;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
2
+
y2
4
=1
兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足
PF1
PF2
=1
,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)求證:直線AB的斜率為定值;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
的兩焦點分別為F1、F2,點P是以F1F2為直徑的圓與橢圓的交點,若∠PF1F2=5∠PF2F1,則橢圓離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓)的兩焦點分別為、,以為邊作正三角形,

若橢圓恰好平分正三角形的另兩條邊,則橢圓的離心率為           . 

查看答案和解析>>

同步練習冊答案