已知橢圓C:+=1(a>b>0),兩個焦點分別為F1和F2,斜率為k的直線l過右焦點F2且與橢圓交于A、B兩點,設(shè)l與y軸交點為P,線段PF2的中點恰為B.若|k|≤,求橢圓C的離心率的取值范圍.
【答案】分析:設(shè)橢圓離心率為e,設(shè)F2的坐標(biāo)為(c,0),設(shè)l的方程為y=kx+m,則可求得l與y軸的交點,進(jìn)而求得B點坐標(biāo),帶橢圓方程求得e和k的關(guān)系式,進(jìn)而根據(jù)k的范圍得出關(guān)于e的不等式,求得e的范圍.
解答:解:設(shè)橢圓離心率為e,設(shè)F2的坐標(biāo)為(c,0),其中c2=a2-b2,
設(shè)l的方程為y=kx+m,則l與y軸的交點為(0,m),m=-kc,
所以B點的坐標(biāo)為(,-),將B點坐標(biāo)代入橢圓方程得+•k2=4,即e2+=4,
所以k2=(4-e2)•(-1)≤,即5e4-29e2+20≤0,解之可得,≤e2≤5,
又有橢圓的性質(zhì),所以≤e<1,
因此橢圓C的離心率取值范圍為[,1).
點評:本題主要考查了橢圓的簡單性質(zhì).解題的關(guān)鍵是充分挖掘題目的隱含條件,尋找量與量間的關(guān)系靈活轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:+y2=1,則與橢圓C關(guān)于直線y=x成軸對稱的曲線的方程是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高考數(shù)學(xué)壓軸卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左右焦點為F1,F(xiàn)2,過F2線與圓x2+y2=b2相切于點A,并與橢圓C交與不同的兩點P,Q,如圖,PF1⊥PQ,若A為線段PQ的靠近P的三等分點,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣西桂林市、崇左市、防城港市高考第一次聯(lián)合模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

 如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標(biāo)原點,OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;

(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省攀枝花市高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,且在x軸上的頂點分別為

(1)求橢圓方程;

(2)若直線軸交于點T,P為上異于T的任一點,直線分別與橢圓交于M、N兩點,試問直線MN是否通過橢圓的焦點?并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期摸底考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)已知橢圓C:=1(a>b>0)的離心率為,短軸一

 

個端點到右焦點的距離為3.

(1)求橢圓C的方程;

(2)過橢圓C上的動點P引圓O:的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案