【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a1 , a3 , a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an≠a1時(shí),數(shù)列{bn}滿足bn=2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=9,a1,a3,a7成等比數(shù)列,
∴ ,解得 或 ,
當(dāng) 時(shí),an=3;
當(dāng) 時(shí),an=2+(n﹣1)=n+1
(2)解:∵an≠a1,∴an=n+1,∴bn=2 =2n+1,
∴ , =2,
∴{bn}是以4為首項(xiàng),以2為公比的等比數(shù)列,
∴Tn= = =2n+2﹣4
【解析】(1)由等差數(shù)列前n項(xiàng)和公式、通項(xiàng)公式及等比數(shù)列性質(zhì),列出方程組,求出首項(xiàng)與公差,由此能求出數(shù)列{an}的通項(xiàng)公式.(2)由an≠a1 , 各bn=2 =2n+1 , 由此能求出數(shù)列{bn}的前n項(xiàng)和Tn .
【考點(diǎn)精析】本題主要考查了等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣2x+2﹣a2)(a>0),g(x)=x2+6x+c(c∈R).
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=﹣4x﹣2,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=1時(shí),對(duì)x1∈[﹣2,2],x2∈[﹣2,2],使f(x1)<g(x2)成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三數(shù)學(xué)競賽初賽考試后,對(duì)考生的成績進(jìn)行統(tǒng)計(jì)(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,第一組[90,100)、第二組[100,110)…第六組[140,150].圖(1)為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人. (Ⅰ)請(qǐng)補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)M;
(Ⅱ)若不低于120分的同學(xué)進(jìn)入決賽,不低于140分的同學(xué)為種子選手,完成下面2×2
列聯(lián)表(即填寫空格處的數(shù)據(jù)),并判斷是否有99%的把握認(rèn)為“進(jìn)入決賽的同學(xué)
成為種子選手與專家培訓(xùn)有關(guān)”.
| [140,150] | 合計(jì) | |
參加培訓(xùn) | 5 | 8 | |
未參加培訓(xùn) | |||
合計(jì) | 4 |
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是,向量,且.
(1)求角B的值;
(2)若,且,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,邊分別是角的對(duì)邊,角為銳角,若, , 的面積為,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣ax+a(a∈R).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,證明:當(dāng)0<x1<x2時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間上任取的一個(gè)數(shù),是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個(gè)和諧優(yōu)美的幾何體.它由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一個(gè)圓柱的側(cè)面上,好似兩個(gè)扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時(shí),它的俯視圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, = == 分別在上, ,現(xiàn)將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點(diǎn),使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時(shí)點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com