若(ax2+
b
x
6的展開式中x3項(xiàng)的系數(shù)為20,則a2+b2的最小值為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì),基本不等式
專題:二項(xiàng)式定理
分析:利用二項(xiàng)式定理的展開式的通項(xiàng)公式,通過x冪指數(shù)為3,求出ab關(guān)系式,然后利用基本不等式求解表達(dá)式的最小值.
解答: 解:(ax2+
b
x
6的展開式中x3項(xiàng)的系數(shù)為20,
所以Tr+1=
C
r
6
(ax2)6-r(
b
x
)r
=
C
r
6
a6-rbrx12-3r
,
令12-3r=3,∴r=3,
C
3
6
a3b3=20
,
∴ab=1,
a2+b2≥2ab=2,當(dāng)且僅當(dāng)a=b=1時(shí)取等號(hào).
a2+b2的最小值為:2.
故答案為:2.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,基本不等式的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū),規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80m,經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60m處,點(diǎn)C位于點(diǎn)O正東方向170m處(OC為河岸),tan∠BCO=
4
3

(1)求新橋BC的長;
(2)當(dāng)OM多長時(shí),圓形保護(hù)區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線x=-3上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
①證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
②當(dāng)
|TF|
|PQ|
最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+2cosx-
3
在區(qū)間[0,
π
2
]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽測(cè)了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測(cè)的60株樹木中,有
 
株樹木的底部周長小于100cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={3,4,5,12,13},B={2,3,5,8,13},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=-5ex+3在點(diǎn)(0,-2)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在3張獎(jiǎng)券中有一、二等獎(jiǎng)各1張,另1張無獎(jiǎng).甲、乙兩人各抽取1張,兩人都中獎(jiǎng)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出k的值為6,則判斷框內(nèi)可填入的條件是( 。
A、s>
1
2
B、s>
3
5
C、s>
7
10
D、s>
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案