19.設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2=1},且B⊆A,求a的值.

分析 解x2+4x=0可得集合A,由B⊆A,進而可得B=∅或{0}或{-4}或{0,-4},分別求出a的值,綜合可得答案

解答 解:A={x|x2+4x=0,x∈R}={0,-4},
∵B⊆A,
∴B=∅或{0}或{-4}或{0,-4};
①當(dāng)B=∅時,△=[2(a+1)]2-4•(a2-1)<0⇒a<-1,
②當(dāng)B={0}時,$\left\{\begin{array}{l}{0=-2(a+1)}\\{0={a}^{2}-1}\end{array}\right.$⇒a=-1,
③當(dāng)B={-4}時,$\left\{\begin{array}{l}{-4-4=-2(a+1)}\\{16={a}^{2}-1}\end{array}\right.$⇒a不存在,
④當(dāng)B={0,-4}時,$\left\{\begin{array}{l}{-4+0=-2(a+1)}\\{0={a}^{2}-1}\end{array}\right.$⇒a=1,
∴a的取值范圍為(-∞,-1]∪{1}.

點評 本題考查集合間的相互關(guān)系,涉及參數(shù)的取值問題,注意分析B=∅的情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-14,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于x的不等式ax2+bx+c>0的解集為(-1,3),則關(guān)于x的不等式ax2-bx+c>0的解集為{x|-3<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=log2$\frac{1}{3x-1}$的定義域為(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.(11,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=x2-2的單調(diào)遞增區(qū)間是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.命題“p:x-1=0”是命題“q:(x-1)(x+2)=0”的充分不必要條件.(填:“充分不必要”、“必要不充分”、“充要條件”、“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校舉行“青少年禁毒”知識競賽網(wǎng)上答題,高二年級共有500名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了100名學(xué)生的成績進行統(tǒng)計.請你解答下列問題:
(1)根據(jù)下面的頻率分布表和頻率分布直方圖,求出a+d和b+c的值;
(2)若成績不低于90分的學(xué)生就能獲獎,問所有參賽學(xué)生中獲獎的學(xué)生約為多少人?
分組頻數(shù)頻率
[60,70)100.1
[70,80)220.22
[80,90)a0.38
[90,100]30c
合計100d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若x∈(0,$\frac{1}{2}$]時,恒有4x<logax,則a的取值范圍是( 。
A.$(0,\frac{{\sqrt{2}}}{2})$B.$(\frac{{\sqrt{2}}}{2},1)$C.$(1,\sqrt{2})$D.$\sqrt{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{a}$=(3,-4),$\overrightarrow$=(2,t),向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為-3,則t=$\frac{21}{4}$.

查看答案和解析>>

同步練習(xí)冊答案