若兩條平行直線分別在兩個相交平面內(nèi),證明:這兩條直線都與兩平面的交線平行.
考點:空間中直線與平面之間的位置關系
專題:證明題,空間位置關系與距離
分析:利用線面平行的判定與性質(zhì)定理,即可得出結論.
解答: 證明:如圖所示,α∩β=l,a∥b,a?α,b?β,
∵a∥b,a?α,b?β,
∴a∥β,
∵a?α,α∩β=l,
∴a∥l,
∴b∥l.
點評:本題考查線面平行的判定與性質(zhì)定理,考查學生分析解決問題的能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求過點P(1,6),且分別滿足下列條件的直線方程:
(1)與直線x-3y+4=0垂直;
(2)與圓(x+2)2+(y-2)2=25相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在各項為正的數(shù)列{an}中,數(shù)列的前n項和Sn滿足Sn=
1
2
(an+
1
an
)

(1)求出a1,a2,a3的值.
(2)由(1)猜想數(shù)列{an}的通項公式,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是二次函數(shù)且f(0)=-1,f(x+1)-f(x)=2x+2,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
1
x
,x∈[-1,0)∪(0,1].
(1)證明函數(shù)f(x)在(0,1]上的單調(diào)性.
(2)判斷函數(shù)f(x)的奇偶性,并求函數(shù)f(x)在[-
1
2
,-
1
3
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人計劃開墾一塊面積為32平方米的長方形菜地,同時要求菜地周圍要留出前后寬2米,左右寬1米的過道(如圖),設菜地的長為x米.
(1)試用x表示菜地的寬;
(2)試問當x為多少時,菜地及過道的總面積y有最小值,最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

是否存在角α、β,α∈(-
π
2
π
2
),β∈(0,π),使等式sin(3π-α)=
2
cos(
π
2
-β),
3
sin(
2
+α)=-
2
cos(π+β)同時成立?若存在,求出α、β的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-1≤x≤0,求函數(shù)y=2x+1-3•4x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c分別是△ABC的三個內(nèi)角A、B、C所對的邊,若a=3,b=5,c=7,
(1)判斷哪個內(nèi)角最大;
(2)求S△ABC;
(3)求cos(2A+2B).

查看答案和解析>>

同步練習冊答案