【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別是a、b、c,已知.
(1)求角A;
(2)若,△ABC的面積為
,求△ABC的周長(zhǎng).
【答案】(1)A;(2)5
.
【解析】
(1)利用正弦定理化簡(jiǎn)得到sinBsinsinAsinB,化簡(jiǎn)得到答案.
(2)根據(jù)面積公式得到bc=6,利用余弦定理得到b+c=5,得到周長(zhǎng).
(1),∴由正弦定理可得sinBsin
sinAsinB,
∵sinB≠0,∴cossinA,即cos
2sin
cos
,
∵∈(0,
),cos
0,∴sin
,∴
,可得A
.
(2),A
,△ABC的面積為
bcsinA
bc,解得bc=6,
∵由余弦定理a2=b2+c2﹣2bccosA,可得7=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣18,
∴解得b+c=5,∴△ABC的周長(zhǎng)為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓柱的底面圓
的半徑
,圓柱的表面積為
;點(diǎn)
在底面圓
上,且直線
與下底面所成的角的大小為
,
(1)求點(diǎn)到平面
的距離;
(2)求二面角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過點(diǎn)作一直線
與雙曲線
相交于
、
兩點(diǎn),若
為
中點(diǎn),則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于概率和統(tǒng)計(jì)的幾種說(shuō)法:①10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為,中位數(shù)為
,眾數(shù)為
,則
,
,
的大小關(guān)系為
;②樣本4,2,1,0,-2的標(biāo)準(zhǔn)差是2;③在面積為
的
內(nèi)任選一點(diǎn)
,則隨機(jī)事件“
的面積小于
”的概率為
;④從寫有0,1,2,…,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是
.其中正確說(shuō)法的序號(hào)有______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營(yíng)業(yè)收入占比 | ||||
凈利潤(rùn)占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營(yíng)銷虧損
B. 該公司2018年度小家電類電器營(yíng)業(yè)收入和凈利潤(rùn)相同
C. 該公司2018年度凈利潤(rùn)主要由空調(diào)類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤(rùn)占比將會(huì)降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫,為了合理定價(jià),先進(jìn)行試銷售,其單價(jià)x(元)與銷量y(個(gè))相關(guān)數(shù)據(jù)如表:
單價(jià)x(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
銷量y(個(gè)) | 12 | 11 | 9 | 7 | 6 |
(1)已知銷量y與單價(jià)x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(2)若該新造型糖畫每個(gè)的成本為5.7元,要使得進(jìn)入售賣時(shí)利潤(rùn)最大,請(qǐng)利用所求出的線性回歸方程確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
參考公式:線性回歸方程yx中斜率和截距最小二乘法估計(jì)計(jì)算公式:
.參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,棱長(zhǎng)為的正方形
中,點(diǎn)
,
分別是邊
,
上的點(diǎn),且
,將
,
沿
,
折起,使得
,
兩點(diǎn)重合于
點(diǎn)上,設(shè)
與
交于
點(diǎn),過點(diǎn)
作
于
點(diǎn).
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為
,上頂點(diǎn)為
.已知橢圓的短軸長(zhǎng)為4,離心率為
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)
為直線
與
軸的交點(diǎn),點(diǎn)
在
軸的負(fù)半軸上.若
(
為原點(diǎn)),且
,求證:直線
的斜率與直線MN的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,
,
,
,點(diǎn)
在底面
上的射影是
的中點(diǎn)
,
.
(1)求證:直線平面
;
(2)若,
、
分別為
、
的中點(diǎn),求直線
與平面
所成角的正弦值;
(3)當(dāng)四棱錐的體積最大時(shí),求二面角
的大�。�
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com