已知集合A={x|x2+5x-6≤0},B={x|x2+3x≥0},求A∩B和A∪B.
考點:并集及其運算,交集及其運算
專題:集合
分析:分別求出A與B中不等式的解集,確定出A與B,求出兩集合的交集與并集即可.
解答: 解:由A中不等式變形得:(x-1)(x+6)≤0,
解得:-6≤x≤1,即A=[-6,1];
由B中不等式變形得:x(x+3)≥0,
解得:x≤-3或x≥0,即B=(-∞,-3]∪[0,+∞),
則A∩B=[-6,-3]∪[0,1],A∪B=R.
點評:此題考查了并集及其運算,交集及其運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,AB=BC=4,AA1=5,P是棱CC1上的任意一點,試問:當(dāng)點P在哪個位置時,AP⊥平面A1BD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)軸標(biāo)根法解關(guān)于x的不等式:(1-2x)(x-1)(x+2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+
π
4
)=4
2

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b>0,a+b=1,求8a2b+8ab2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,(x∈R).
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<x<0,sinx=-
3
5

(1)求sinx-cosx的值;
(2)求tan2x;
(3)求3sin2
x
2
-2sin
x
2
cos
x
2
+3cos2
x
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+kx,x≤2
k2x-21k+59,x>2
,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=x3-2x+1,則y′|x=2=
 

查看答案和解析>>

同步練習(xí)冊答案