甲、乙兩人下棋,兩人下和棋的概率為
1
2
,乙獲勝的概率為
1
5
,則甲獲勝的概率為
 
考點:相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:由條件利用互斥事件的概率加法公式求得甲獲勝的概率.
解答: 解:∵兩人下和棋的概率為
1
2
,乙獲勝的概率為
1
5
,則甲獲勝的概率為1-
1
2
-
1
5
=
3
10

故答案為:
3
10
點評:本題主要考查互斥事件的概率加法公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)滿足f(log2x)=
2(x2-1)
3x

(Ⅰ)求函數(shù)f(x)的表達(dá)式并討論其單調(diào)性;
(Ⅱ)若對任意實數(shù)x∈[-1,
1
2
],都有|f(x)|的值不大于a2+3a+3,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅游景點預(yù)計2013年1月份起前x個月的旅游人數(shù)的和p(x)(單位:萬人)與x的關(guān)系近似地滿足p(x)=
1
2
x(x+1).(39-2x),(x∈N*,且x≤12).已知第x月的人均消費(fèi)額q(x)(單位:元)與x的近似關(guān)系是
q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)

(Ⅰ)寫出2013年第x月的旅游人數(shù)f(x)(單位:人)與x的函數(shù)關(guān)系式;
(Ⅱ)試問2013年第幾月旅游消費(fèi)總額最大,最大月旅游消費(fèi)總額為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a3+a7=25,則a2+a4+a6+a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若B={-1,3,5},下列集合A,使得f:x→2x-1是A到B的映射的是
 
(填序號)
①A={0,2,3};②A={-3,5,9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①若函數(shù)y=f(x)存在反函數(shù)y=g(x),則函數(shù)y=f(x+1)的反函數(shù)為y=f-1(x+1);
②非零向量
AB
AC
成鈍角的充分必要條件為
AB
AC
<0;
③若函數(shù)y=g(x),y=f(x)均為定義在R的奇函數(shù),則y=g[f(x)]為奇函數(shù);
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程
|x|
x+2
=kx有三個不同的實根,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在棱長為1的正方體ABCD-A1B1C1D1中,點M、N、P分別是棱AB、BC、AA1的中點,給出下列五個結(jié)論:
①AC⊥PM;
②B1D∥PMN;
③AC∥平面PMN;
④過P、M、N的平面截該正方體所得的截面面積為
3
3
4
;
⑤B1P⊥平面PMN.
以上結(jié)論中正確的是
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-
1
3
x+
1
6
,x∈[0,
1
2
]
2x3
x+1
,x∈(
1
2
,1]
,函數(shù)g(x)=asin(
π
6
x)-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是( 。
A、[-
2
3
,1]
B、[
1
2
4
3
]
C、[
4
3
,
3
2
]
D、[
1
3
,2]

查看答案和解析>>

同步練習(xí)冊答案