8.已知點O是銳角△ABC的外心,a,b,c分別為內角A、B、C的對邊,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,則λ的值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

分析 由題意畫出圖形,設△ABC的外接圓半徑為R,根據(jù)三角形外心的性質可得:OD⊥AB、OE⊥AC,由向量的線性運算和向量數(shù)量積的運算,求出$\overrightarrow{AB}•\overrightarrow{OA}$和$\overrightarrow{AC}•\overrightarrow{OA}$,在已知的等式兩邊同時與$\overrightarrow{OA}$進行數(shù)量積運算,代入后由正弦定理化簡,由兩角和的正弦公式和內角和定理求出λ的值.

解答 解:如圖所示:O是銳角△ABC的外心,
D、E分別是AB、AC的中點,且OD⊥AB,OE⊥AC,
設△ABC外接圓半徑為R,則$|\overrightarrow{OA}|$=R,
由圖得,$\overrightarrow{OA}=\overrightarrow{OD}+\overrightarrow{DA}$,
則$\overrightarrow{AB}•\overrightarrow{OA}=\overrightarrow{AB}•(\overrightarrow{OD}+\overrightarrow{DA})$=$\overrightarrow{AB}•\overrightarrow{DA}$ 
=$\overrightarrow{AB}•(-\frac{1}{2}\overrightarrow{AB})$=$-\frac{1}{2}{\overrightarrow{AB}}^{2}$=$-\frac{1}{2}|{\overrightarrow{AB}|}^{2}$,
同理可得,$\overrightarrow{AC}•\overrightarrow{OA}=-\frac{1}{2}|\overrightarrow{AC}{|}^{2}$,
由$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=λ\overrightarrow{OA}$得,
$\frac{cosB}{sinC}\overrightarrow{AB}•\overrightarrow{OA}+\frac{cosC}{sinB}\overrightarrow{AC}•\overrightarrow{OA}=λ{\overrightarrow{OA}}^{2}$,
所以$-\frac{1}{2}•\frac{cosB}{sinC}|\overrightarrow{AB}{|}^{2}-\frac{1}{2}\frac{cosC}{sinB}|\overrightarrow{AC}{|}^{2}=λ{\overrightarrow{OA}}^{2}$,
則$cosB|\overrightarrow{AB}|\frac{|\overrightarrow{AB}|}{sinC}+cosC|\overrightarrow{AC}|\frac{|\overrightarrow{AC}|}{sinB}$=$-2λ|\overrightarrow{OA}{|}^{2}$,①
在△ABC中由正弦定理得:$\frac{|\overrightarrow{AB}|}{sinC}=\frac{|\overrightarrow{AC}|}{sinB}=2R$,
代入①得,$2RcosB|\overrightarrow{AB}|+2RcosC|\overrightarrow{AC}|=-2λ{R}^{2}$,
則$cosB|\overrightarrow{AB}|+cosC|\overrightarrow{AC}|=-λR$,②
由正弦定理得,$|\overrightarrow{AB}|=2RsinC$、$|\overrightarrow{AC}|=2RsinB$,
代入②得,2RsinCcosB+2RcosCsinB=-λR;
所以2sin(C+B)=-λ,即2sin$\frac{3π}{4}$=-λ,
解得λ=$-\sqrt{2}$,
故選D.

點評 本題考查了正弦定理,三角形外心的性質,向量數(shù)量積的運算,向量的線性運算,以及兩角和的正弦公式的應用,考查化簡、變形能力,分析問題、解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.計算:求$\underset{lim}{x→0}$$\frac{({∫}_{0}^{x}{e}^{{t}^{2}}dt)^{2}}{{∫}_{0}^{x}t{e}^{2{t}^{2}}dt}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A,O為坐標原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P,Q,若∠PAQ=60°,且$\overrightarrow{OQ}$=3$\overrightarrow{OP}$,則雙曲線的離心率為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合P={x∈N|1≤x<10},集合Q={x∈R|x2+x-6=0},則P∩Q=( 。
A.{2}B.{3}C.{-2,3}D..{-3,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(Ⅰ)當a=1,b=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當b=2時,若對任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖是水平放置的△ABC按“斜二測畫法”得到的直觀圖,其中B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,那么△ABC的面積是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{2}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知直線x-y+1=0與曲線y=lnx+a相切,則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.給定函數(shù)(1)y=$\frac{1}{{\sqrt{x}}}$;(2)y=$\frac{5x+2}{x-1}$;(3)y=-|2x+1|;(4)y=2x2+2x-$\frac{3}{2}$其中在區(qū)間(0,1)上單調遞減的函數(shù)序號是(1),(2),(3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等差數(shù)列{an}滿足:a1=2且a22=a1a5
(1)求數(shù)列{an}的通項公式;
(2)記Sn為數(shù)列{a2n-1}的前n項和,求Sn

查看答案和解析>>

同步練習冊答案