已知直角梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA=AB,求證:AC⊥BC.

答案:
解析:

  證明:以A為原點,AB所在直線為x軸,建立直角坐標系,如圖所示,設AD=1,則A(0,0),B(2,0),C(1,1),D(0,1).

  ∴

  ∴,即BC⊥AC.


提示:

首先恰當?shù)亟⒆鴺讼,然后證明


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)求證:FG∥面BCD.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:FG∥面BCD;
(2)設四棱錐D-ABCE的體積為V,其外接球體積為V′,求V:V′的值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點,現(xiàn)將△ADE沿AE折疊,使DE⊥EC.
(1)求證:BC⊥平面CDE;
(2)求證:FG∥平面BCD;
(3)求四棱錐D-ABCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角梯形ABCD中,AB∥CD,∠BAD=90°,且AB=2,AD=3,CD=1,點E、F分別在AD、BC上,滿足AE=
1
3
AD,BF=
1
3
BC
.現(xiàn)將此梯形沿EF折疊成如圖所示圖形,且使AD=
3

(1)求證:AE⊥平面ABCD;
(2)求二面角D-CE-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角梯形ABCD的上底BC=
2
,BC∥AD,BC=
1
2
AD
CD⊥AD,PDC⊥,平面平面ABCD,△PCD是邊長為2的等邊三角形.
(1)證明:AB⊥PB;
(2)求二面角P-AB-D的大小.
(3)求三棱錐A-PBD的體積.

查看答案和解析>>

同步練習冊答案