若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=|x|,函數(shù)g(x)=,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點(diǎn)的個(gè)數(shù)為(  )

A.10 B.9 C.8 D.7

 

B

【解析】由f(x+2)=f(x)可知,函數(shù)f(x)是周期為2的周期函數(shù).在同一直角坐標(biāo)系中畫出函數(shù)f(x)與函數(shù)g(x)的圖象,結(jié)合圖象可知,函數(shù)h(x)在[-5,5]上有9個(gè)零點(diǎn).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(四)(解析版) 題型:選擇題

在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若cos B=,=2,且S△ABC=, 則b的值為(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:填空題

已知斜率為2的直線l過拋物線y2=px(p>0)的焦點(diǎn)F,且與y軸相交于點(diǎn)A.若△OAF(O為坐標(biāo)原點(diǎn))的面積為1,則p=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).

(1)求a,b的值;

(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實(shí)數(shù)m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:選擇題

若f(x)=-x2+bln(x+2)在(-1,+∞)上是減函數(shù),則b的取值范圍是(  )

A.[-1,+∞) B.(-1,+∞)

C.(-∞,-1] D.(-∞,-1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:解答題

已知函數(shù)f(x)=ln x-

(1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;

(2)f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;

(3)試求實(shí)數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:填空題

已知經(jīng)過計(jì)算和驗(yàn)證有下列正確的不等式:<2,<2,<2,根據(jù)以上不等式的規(guī)律,請寫出一個(gè)對正實(shí)數(shù)m,n都成立的條件不等式________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:解答題

已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點(diǎn).

(1)求f(x)的解析式;

(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題

(2013·江西高考)復(fù)數(shù)z=i(-2-i)(i為虛數(shù)單位)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在(  )

A.第一象限 B.第二象限

C.第三象限 D.第四象限

 

查看答案和解析>>

同步練習(xí)冊答案