【題目】已知函數(shù)(, 為自然對(duì)數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極值.
【答案】(1);(2)極小值為1;無(wú)極大值.
【解析】試題分析:(1)求出f(x)的導(dǎo)數(shù),依題意,f′(1)=0,從而可求得a的值;
(2),分①a≤0時(shí)②a>0討論,可知f(x)在∈(﹣∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,從而可求其極值.
試題解析:
(Ⅰ)由,得.
又曲線在點(diǎn)處的切線平行于軸,
得,即,解得.
(Ⅱ) ,
①當(dāng)時(shí), , 為上的增函數(shù),所以函數(shù)無(wú)極值.
②當(dāng)時(shí),令,得, .
,; ,.
所以在上單調(diào)遞減,在上單調(diào)遞增,
故在處取得極小值,且極小值為,無(wú)極大值.
綜上,當(dāng)時(shí),函數(shù)無(wú)極值;
當(dāng), 在處取得極小值,無(wú)極大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ()
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)時(shí),對(duì)于任意, ,總有成立,其中是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列: , ,…, ()中()且對(duì)任意的
恒成立,則稱數(shù)列為“數(shù)列”.
(Ⅰ)若數(shù)列, , , 為“數(shù)列”,寫(xiě)出所有可能的, ;
(Ⅱ)若“數(shù)列”: , ,…, 中, , ,求的最大值;
(Ⅲ)設(shè)為給定的偶數(shù),對(duì)所有可能的“數(shù)列”: , ,…, ,
記,其中表示, ,…, 這個(gè)數(shù)中最大的數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)是單調(diào)區(qū)間;
(2)如果關(guān)于x的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值集合;
(3)是否存在正數(shù)k,使得關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根?如果存在,求k滿足的條件;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某項(xiàng)運(yùn)動(dòng)組委會(huì)為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛(ài)運(yùn)動(dòng),其余人不喜愛(ài)運(yùn)動(dòng).得到下表:
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表, 問(wèn):能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下,認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?并說(shuō)明理由.
(2)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語(yǔ))抽取2名,求抽出的志愿者中能勝任翻譯工作的人數(shù)的分布列及數(shù)學(xué)期望.
參考公式:
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)在處的切線與直線垂直時(shí),方程有兩相異實(shí)數(shù)根,求的取值范圍;
(2)若冪函數(shù)的圖象關(guān)于軸對(duì)稱,求使不等式在上恒成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, ,前項(xiàng)和滿足().
⑴ 求數(shù)列的通項(xiàng)公式;
⑵ 記,求數(shù)列的前項(xiàng)和;
⑶ 是否存在整數(shù)對(duì)(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對(duì);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(I)若,求函數(shù)在點(diǎn)處的切線方程;
(II)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(III)令,(是自然對(duì)數(shù)的底數(shù)),求當(dāng)實(shí)數(shù)等于多少時(shí),可以使函數(shù)取得最小值為3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com