分析 (1)利用互化公式即可得出普通方程.
(2)設(shè)x=2+cosθ,y=2+sinθ.利用三角函數(shù)換元、二次函數(shù)的單調(diào)性即可得出.
解答 解 (1)由ρ2-4$\sqrt{2}$ρcos+7=0可得ρ2-4ρcosθ-4ρsinθ+7=0,化為直角坐標(biāo)方程得x2+y2-4x-4y+7=0,
即(x-2)2+(y-2)2=1,它表示以(2,2)為圓心,以1為半徑的圓.
(2)由題意可設(shè)x=2+cosθ,y=2+sinθ.
則t=(x+1)(y+1)=(3+cosθ)(3+sinθ)=9+3(sinθ+cosθ)+sinθcos.
令sinθ+cosθ=m,平方可得1+2sinθcosθ=m2,
所以sinθcosθ=$\frac{{m}^{2}-1}{2}$,t=9+3m+$\frac{{m}^{2}-1}{2}$=$\frac{1}{2}$m2+3m+$\frac{17}{2}$(-$\sqrt{2}$≤m≤$\sqrt{2}$).
由二次函數(shù)的圖象可知t的取值范圍為$[\frac{19}{2}-3\sqrt{2},\frac{19}{2}+3\sqrt{2}]$
點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化公式、三角函數(shù)換元、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20π | B. | 42π | C. | 52π | D. | 56π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com