四棱錐P-ABCD的底面是邊長(zhǎng)為a的正方形,PA⊥平面ABCD,側(cè)棱PB與底面ABCD所成的角為60°,則這個(gè)四棱錐的體積是   
【答案】分析:利用線面垂直和線面角即可得出四棱錐的高PA,再利用四棱錐的體積計(jì)算公式即可得出.
解答:解:如圖所示,
∵PA⊥平面ABCD,∴PA⊥AB,∴∠PBA=60°.
又AB=a,∴PA=AB•tan60°=
∴VP-ABCD=
=
=
故答案為
點(diǎn)評(píng):熟練掌握線面垂直的性質(zhì)、線面角、四棱錐的體積計(jì)算公式等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是PA的中點(diǎn).
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)求證:PC∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四棱錐P-ABCD的底面是邊長(zhǎng)為a的正方形,側(cè)棱PA⊥底面ABCD,側(cè)面PBC內(nèi)有BE⊥PC于E,且BE=
6
3
a,試在AB上找一點(diǎn)F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,O是該正方形的中心,P是平面ABCD外一點(diǎn),PO⊥底面ABCD,E是PC的中點(diǎn).求證:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱錐P-ABCD的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD的高為PO,若Q為CD中點(diǎn),且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
則x+y=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四棱錐P-ABCD的三視圖如圖所示,則這個(gè)四棱錐的體積為( 。
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案