已知等比數(shù)列{bn}的公比為3,數(shù)列{an}滿足,且a1=1。
(1)判斷{an}是何種數(shù)列,并給出證明;
(2)若,Tn是數(shù)列{Cn}的前n項(xiàng)和,求使得對(duì)所有n∈N*都成立的最小正整數(shù)m。
解:(1)數(shù)列為等差數(shù)列;
證明:因?yàn)閿?shù)列是公比為3的等比數(shù)列,
所以,,
所以,,
即數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.
(2)由(1)可知,則
于是
,
,得,
對(duì)所有n∈N*都成立,所以,
所以,使得對(duì)所有n∈N*都成立的最小正整數(shù)m=30。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足2an+1=an+an+2(n=1,2,3,…),它的前n項(xiàng)和為Sn,且a3=5,S6=36.
(1)求an;
(2)已知等比數(shù)列{bn}滿足b1+b2=1+a,b4+b5=a3+a4(a≠-1),設(shè)數(shù)列{an•bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{bn},公比q>0,b3=8,前n項(xiàng)和Tn滿足T3=14,且數(shù)列{an}滿足an+1-2log2bn=0(n∈N*
(1)求{an},{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{bn}與數(shù)列{an}滿足bn=3an,n∈N*
(1)判斷{an}是何種數(shù)列,并給出證明;
(2)若a8+a13=m,求b1b2…b20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知等差數(shù)列{an}滿足a3+a6=9,a1a8=8,a1>a8,求數(shù)列{an}的前n項(xiàng)和Sn;
(2)已知等比數(shù)列{bn}滿足b3=2,b2+b4=
203
,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{bn}與數(shù)列{an}滿足bn=3an(n∈N*)判斷{an}是何種數(shù)列,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案