【題目】給出以下四個(gè)說法:
①殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小
②在刻畫回歸模型的擬合效果時(shí),相關(guān)指數(shù)的值越大,說明擬合的效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加個(gè)單位;
④對(duì)分類變量與,若它們的隨機(jī)變量的觀測值越小,則判斷“與有關(guān)系”的把握程度越大.
其中正確的說法是
A. ①④B. ②④C. ①③D. ②③
【答案】D
【解析】
根據(jù)殘差點(diǎn)分布和相關(guān)指數(shù)的關(guān)系判斷①是否正確,根據(jù)相關(guān)指數(shù)判斷②是否正確,根據(jù)回歸直線的知識(shí)判斷③是否正確,根據(jù)聯(lián)表獨(dú)立性檢驗(yàn)的知識(shí)判斷④是否正確.
殘差點(diǎn)分布寬度越窄,相關(guān)指數(shù)越大,故①錯(cuò)誤.相關(guān)指數(shù)越大,擬合效果越好,故②正確.回歸直線方程斜率為故解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加個(gè)單位,即③正確.越大,有把握程度越大,故④錯(cuò)誤.故正確的是②③,故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京聯(lián)合張家口獲得2022年第24屆冬奧會(huì)舉辦權(quán),我國各地掀起了發(fā)展冰雪運(yùn)動(dòng)的熱潮,現(xiàn)對(duì)某高中的學(xué)生對(duì)于冰雪運(yùn)動(dòng)是否感興趣進(jìn)行調(diào)查,該高中男生人數(shù)是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調(diào)查高中生“是否對(duì)冰雪運(yùn)動(dòng)感興趣”得到如下列聯(lián)表:
感興趣 | 不感興趣 | 合計(jì) | |
男生 | 40 | ||
女生 | 30 | ||
合計(jì) | 110 |
(1)補(bǔ)充完成上述列聯(lián)表;
(2)是否有99%的把握認(rèn)為是否喜愛冰雪運(yùn)動(dòng)與性別有關(guān).
附: (其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機(jī)變量越大,說明“與有關(guān)系”的可信度越大.
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為中, ,
則.正確的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥平面ABCD,E,F分別為線段AB,BC的中點(diǎn).
(1)線段AP上一點(diǎn)M,滿足,求證:EM∥平面PDF;
(2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業(yè)場景可以實(shí)現(xiàn)手機(jī)支付.為了解各年齡層的人使用手機(jī)支付的情況,隨機(jī)調(diào)查50次商業(yè)行為,并把調(diào)查結(jié)果制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
手機(jī)支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若從年齡在 [55,65)的被調(diào)查者中隨機(jī)選取2人進(jìn)行調(diào)查,記選中的2人中使用手機(jī)支付的人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年,請根據(jù)上表完2×2列聯(lián)表,是否有以上的把握判斷使用手機(jī)支付與年齡(中青年、中老年)有關(guān)聯(lián)?
手機(jī)支付 | 未使用手機(jī)支付 | 總計(jì) | |
中青年 | |||
中老年 | |||
總計(jì) |
可能用到的公式:
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像相鄰對(duì)稱軸之間的距離是,若將的圖像向右移個(gè)單位,所得函數(shù)為奇函數(shù).
(1)求的解析式;
(2)若函數(shù)的零點(diǎn)為,求;
(3)若對(duì)任意,有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市交通管理部門為了解市民對(duì)機(jī)動(dòng)車“單雙號(hào)限行”的態(tài)度,隨機(jī)采訪了100名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計(jì),得到了如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計(jì) | |
沒有私家車 | 15 | ||
有私家車 | 45 | ||
合計(jì) | 100 |
已知在被采訪的100人中隨機(jī)抽取1人且抽到“贊同限行”者的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“對(duì)限行的態(tài)度與是否擁有私家車有關(guān)”;
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機(jī)抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
附:參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com