已知
a
b
是兩個(gè)向量,則“
a
=3
b
”是“|
a
|=3|
b
|”的( 。
分析:由于
a
=3
b
,則|
a
|=3|
b
|
,而|
a
|=3|
b
|
不能推出
a
=3
b
,則“
a
=3
b
”是“|
a
|=3|
b
|
”的充分不必要條件.
解答:解:由于
a
=3
b
,則|
a
|=3|
b
|
,
而若令
a
=(3,0),
b
=(0,1)
,則滿足|
a
|=3|
b
|
但不滿足
a
=3
b
,
則“
a
=3
b
”是“|
a
|=3|
b
|
”的充分不必要條件.
故選A.
點(diǎn)評(píng):判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
是兩個(gè)向量,且
a
=(1,
3
cosx),
b
=(cos2x,sinx),x∈R,定義:y=
a
b

(1)求y關(guān)于x的函數(shù)解析式y(tǒng)=f(x)及其單調(diào)遞增區(qū)間;?
(2)若x∈[0,
π
2
],求函數(shù)y=f(x)的最大值、最小值及其相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知
a
,
b
是兩個(gè)向量,則“
a
=3
b
”是“|
a
|=3|
b
|”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知
a
,
b
是兩個(gè)向量,則“
a
=3
b
”是“|
a
|=3|
b
|”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
a
b
是兩個(gè)向量,且
a
=(1,
3
cosx),
b
=(cos2x,sinx),x∈R,定義:y=
a
b

(1)求y關(guān)于x的函數(shù)解析式y(tǒng)=f(x)及其單調(diào)遞增區(qū)間;?
(2)若x∈[0,
π
2
],求函數(shù)y=f(x)的最大值、最小值及其相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案