若F1、F2是橢圓的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),則的最小值為   
【答案】分析:由F1、F2是橢圓的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),知==,由|MF1|•|MF2|的最大值為a2=4,能求出的最小值.
解答:解:∵F1、F2是橢圓的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),
==,
∵|MF1|•|MF2|的最大值為a2=4,
的最小值==1.
故答案為:1.
點(diǎn)評(píng):本題考查橢圓中的最小值的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p是橢圓
x2
25
+
y2
16
=1
上的點(diǎn).若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于(  )
A、4B、5C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),當(dāng)PF1⊥PF2,且∠PF1F2=300,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是橢圓
x2
9
+
y2
4
=1
上的任意一點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|MF1|+|MF2|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
25
+
y2
16
=1
上的點(diǎn).若F1、F2是橢圓的兩個(gè)焦點(diǎn),則PF1+PF2=
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省漳州市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

設(shè)P的橢圓上的點(diǎn),若F1、F2是橢圓的兩個(gè)焦點(diǎn),則︱PF1︱+︱PF2︱等于(   )

  A、4        B、5             C、8            D、10

 

查看答案和解析>>

同步練習(xí)冊(cè)答案