已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,則S9=
0
0
分析:先將條件a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,利用平方差公式進(jìn)行轉(zhuǎn)化,然后利用等差數(shù)列的性質(zhì)求出
解答:解:因?yàn)閍
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,所以
a
2
8
-
a
2
3
+
a
2
7
-
a
2
2
=0
,
即(a8-a3)(a8+a3)+(a7-a2)(a7+a2)=0,
所以5d(a8+a3+a7+a2)=0,因?yàn)楣畈粸?,
所以a8+a3+a7+a2=0,即2(a1+a9)=0,
所以a1+a9=0.
所以S9=
9(a1+a9)
2
=0

故答案為:0
點(diǎn)評:本題主要考查等差數(shù)列的性質(zhì)以及等差數(shù)列的前n項(xiàng)和,要求熟練掌握等差數(shù)學(xué)的性質(zhì)以及求和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S5=3a5-2,又a1,a2,a5依次成等比數(shù)列,數(shù)列{bn}滿足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k為大于0的常數(shù).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記數(shù)列an+bn的前n項(xiàng)和為Tn,若當(dāng)且僅當(dāng)n=3時(shí),Tn取得最小值,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)二模)已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=a4+6,且a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1Sn
}的前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為{an}的前n項(xiàng)和,則
S2-S1
S3-S2
的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知公差不為0的等差數(shù)列{an}的前3項(xiàng)和S3=9,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和Sn
(2)設(shè)Tn為數(shù)列{
1anan+1
}的前n項(xiàng)和,若Tn≤λan+1對一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=a,a∈N*,設(shè)數(shù)列的前n項(xiàng)和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

同步練習(xí)冊答案