【題目】(導(dǎo)學(xué)號(hào):05856306)

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為ab,c,已知,且b=5,acos C=-1.

(Ⅰ)求角A

(Ⅱ)求△ABC的面積.

【答案】(1) (2)15

【解析】試題分析:(1)先化簡(jiǎn),再根據(jù)正弦定理和余弦定理即可求出A的值;

(2)由余弦定理和b=5,acosC=﹣1,求出c,再根據(jù)三角面積公式即可求出.

試題解析:

(Ⅰ)由正弦定理得,

所以=1-,整理得b2c2a2bc,

所以cos A,又A∈(0,π),所以A.

(Ⅱ)因?yàn)?/span>acos C=-1,所以由余弦定理得a·=-1,

整理得a2c2=-b2-2b=-35,把b=5,a2c2=-35,代入b2c2a2bc,得

25=-35+5c,解得c=12,

所以SABCbcsin A×5×12×=15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856261)

某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(Ⅰ)下表是年齡的頻率分布表,求正整數(shù)a,b的值;

(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組抽取的員工的人數(shù)分別是多少?

(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=axa0)上一點(diǎn)Pt )到焦點(diǎn)F的距離為2t

(l)求拋物線C的方程;

(2)拋物線上一點(diǎn)A的縱坐標(biāo)為1,過(guò)點(diǎn)Q(3,﹣1)的直線與拋物線C交于M,N兩個(gè)不同的點(diǎn)(均與點(diǎn)A不重合),設(shè)直線AM,AN的斜率分別為k1,k2,求證:k1×k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知p、q為常數(shù), ),又, , .

1)求pq的值;

2)求數(shù)列的通項(xiàng)公式;

3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一水域上建一個(gè)演藝廣場(chǎng).演藝廣場(chǎng)由看臺(tái)Ⅰ,看臺(tái)Ⅱ,三角形水域,及矩形表演臺(tái)四個(gè)部分構(gòu)成(如圖).看臺(tái)Ⅰ,看臺(tái)Ⅱ是分別以 為直徑的兩個(gè)半圓形區(qū)域,且看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍;矩形表演臺(tái)中, 米;三角形水域的面積為平方米.設(shè).

(Ⅰ)當(dāng)時(shí),求的長(zhǎng);

(Ⅱ)若表演臺(tái)每平方米的造價(jià)為萬(wàn)元,求表演臺(tái)的最低造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856311)[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線C1 (α為參數(shù))與曲線C2ρ=4sin θ(θ為參數(shù)).

(Ⅰ)寫(xiě)出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;

(Ⅱ)求C1C2公共弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856325)已知函數(shù)f(x)=+eln x,直線lykx(k≠0)與函數(shù)f(x)的圖象相切于點(diǎn)A(t,f(t))(f(t)≠0),則(  )

A. t∈(0,1) B. t∈(1,e) C. t∈(e,3) D. t∈(3,e2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓的頂點(diǎn), 為橢圓的左焦點(diǎn)且橢圓經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)過(guò)橢圓的右頂點(diǎn)作斜率為的直線交橢圓于另一點(diǎn)連結(jié)并延長(zhǎng)交橢圓于點(diǎn),當(dāng)的面積取得最大值時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)準(zhǔn)備參加考試,在正式考試之前進(jìn)行了十次模擬測(cè)試,測(cè)試成績(jī)?nèi)缦拢?/span>

甲:137,121131,120129,119,132,123,125133

乙:110,130147,127146,114,126110,144146

1畫(huà)出甲、乙兩人成績(jī)的莖葉圖,求出甲同學(xué)成績(jī)的平均數(shù)和方差,并根據(jù)莖葉圖,寫(xiě)出甲、乙兩位同學(xué)平均成績(jī)以及兩位同學(xué)成績(jī)的中位數(shù)的大小關(guān)系的結(jié)論;

2規(guī)定成績(jī)超過(guò)127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績(jī)中各隨機(jī)選出一個(gè)求選出成績(jī)“良好”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(注:方差,其中的平均數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案