【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
求:(1)求圓的方程;
(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實數(shù),使得過點的直線垂直平分弦?
若存在,求出實數(shù)的值;若不存在,請說明理由.
【答案】(1);(2).
【解析】
試題分析:(1)設(shè)圓心為(),利用直線與圓相切的位置關(guān)系,根據(jù)點到直線的距離公式列方程解得的值,從而確定圓的方程;
(2)直線與圓交于不同的兩點,利用圓心到直線的距離小于圓的半徑列不等式從而解出實數(shù)的取值范圍;
(3)根據(jù)圓的幾何性質(zhì),垂直平分弦的直線必過圓心,從而由兩點確定直線的斜率,進(jìn)一步由兩直線垂直的條件確定實數(shù)的值.
試題解析:(1)設(shè)圓心為().
由于圓與直線相切,且半徑為,所以,,
即.因為為整數(shù),故.
故所求的圓的方程是.
(2)直線即.代入圓的方程,消去整理,得
.由于直線交圓于兩點,
故,即,解得,或.
所以實數(shù)的取值范圍是.
(3)設(shè)符合條件的實數(shù)存在,由(2)得,則直線的斜率為,
的方程為,即.
由于垂直平分弦,故圓心必在上.
所以,解得.由于,
所以存在實數(shù),使得過點的直線垂直平分弦.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},則方程f(x)﹣lgx=0的解的個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,兩個頂點分別為,.過點的直線交橢圓于,兩點,直線與的交點為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;
(3)已知點,若點到直線的距離為,求的最大值并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,是角的對邊,則其中真命題的序號是__________.
①若,則在上是增函數(shù);
②若,則是直角三角形;
③ 的最小值為;
④若,則;
⑤若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓()的一個焦點,過原點的直線與橢圓交于、兩點,且,△的面積為。
(1)求橢圓的離心率;
(2)若,過點且不與坐標(biāo)軸垂直的直線交橢圓于、兩點,線段的垂直平分線與軸交于點,求點橫坐標(biāo)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點坐標(biāo);
(2)若C上的點到l距離的最大值為 ,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax.
(1)若函數(shù)f(x)在x=3處取得極值,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若a> ,函數(shù)y=f(x)在[0,2a]上的最小值是﹣a2 , 求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com