已知函數(shù),f '(x)為f(x)的導(dǎo)函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.

⑴求函數(shù)的解析式;

⑵若對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值;

⑶若過(guò)點(diǎn),可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

【答案】

;⑵的最小值為;⑶.

【解析】

試題分析:⑴,由是偶函數(shù)得.又,所以,由此可得解析式;

⑵對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,則只需即可.所以接下來(lái)就利用導(dǎo)數(shù)求在區(qū)間上的最大值與最小值,然后代入解不等式即可得的最小值.⑶易知點(diǎn)不在曲線上.凡是過(guò)某點(diǎn)的切線(不是在某點(diǎn)處的切線)的問(wèn)題,都要設(shè)出切點(diǎn)坐標(biāo)然后列方程組..

設(shè)切點(diǎn)為.則.又,∴切線的斜率為

由此得,即.下面就考查這個(gè)方程的解的個(gè)數(shù).

因?yàn)檫^(guò)點(diǎn),可作曲線的三條切線,所以方程有三個(gè)不同的實(shí)數(shù)解.即函數(shù)有三個(gè)不同的零點(diǎn).接下來(lái)就利用導(dǎo)數(shù)結(jié)合圖象研究這個(gè)函數(shù)的零點(diǎn)的個(gè)數(shù).

試題解析:⑴∵,1分

是偶函數(shù)得.又,所以3分

.4分

⑵令,即,解得.5分

 

+

 

極大值

極小值

,,

∴當(dāng)時(shí),,.6分

則對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有

,所以

所以的最小值為.8分

⑶∵點(diǎn)不在曲線上,

∴設(shè)切點(diǎn)為.則

,∴切線的斜率為

,即.10分

因?yàn)檫^(guò)點(diǎn),可作曲線的三條切線,

所以方程有三個(gè)不同的實(shí)數(shù)解.

即函數(shù)有三個(gè)不同的零點(diǎn).11分

,解得

+

+

極大值

極小值

 即 解得.12分

考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等關(guān)系;3、函數(shù)的零點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知函數(shù)y=f-1(x)是函數(shù)f(x)=2x-1(x≥1)的反函數(shù),則f-1(x)=
1+log2x(x≥1)
要求寫明自變量的取值范圍).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f-1(x)是y=f(x)的反函數(shù),若函數(shù)f(x)=log2(x+4),則f-1(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•武漢模擬)已知函數(shù)y=f-1(x)的圖象過(guò)(1,0),則y=f(
1
2
x-1)
的反函數(shù)的圖象一定過(guò)點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)已知函數(shù)y=f-1(x)是函數(shù)f(x)=2x-1(x≥1)的反函數(shù),則f-1(x)=
1+log2x(x≥1)
1+log2x(x≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市黃浦區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)y=f-1(x)是函數(shù)f(x)=2x-1(x≥1)的反函數(shù),則f-1(x)=    要求寫明自變量的取值范圍).

查看答案和解析>>

同步練習(xí)冊(cè)答案