【題目】某地區(qū)進行疾病普查,為此要檢驗每一人的血液,如果當?shù)赜?/span>人,若逐個檢驗就需要檢驗次,為了減少檢驗的工作量,我們把受檢驗者分組,假設每組有個人,把這個個人的血液混合在一起檢驗,若檢驗結果為陰性,這個人的血液全為陰性,因而這個人只要檢驗一次就夠了,如果為陽性,為了明確這個個人中究竟是哪幾個人為陽性,就要對這個人再逐個進行檢驗,這時個人的檢驗次數(shù)為次.假設在接受檢驗的人群中,每個人的檢驗結果是陽性還是陰性是獨立的,且每個人是陽性結果的概率為.
(Ⅰ)為熟悉檢驗流程,先對3個人進行逐個檢驗,若,求3人中恰好有1人檢測結果為陽性的概率;
(Ⅱ)設為個人一組混合檢驗時每個人的血需要檢驗的次數(shù).
①當,時,求的分布列;
②是運用統(tǒng)計概率的相關知識,求當和滿足什么關系時,用分組的辦法能減少檢驗次數(shù).
【答案】(Ⅰ); (Ⅱ)①見解析,②當時,用分組的辦法能減少檢驗次數(shù).
【解析】
(Ⅰ)根據(jù)獨立重復試驗概率公式得結果;(Ⅱ)①先確定隨機變量,再分別計算對應概率,列表可得分布列,②先求數(shù)學期望,再根據(jù)條件列不等式,解得結果.
(Ⅰ)對3人進行檢驗,且檢驗結果是獨立的,
設事件:3人中恰有1人檢測結果為陽性,則其概率
(Ⅱ)①當,時,則5人一組混合檢驗結果為陰性的概率為,每人所檢驗的次數(shù)為次,若混合檢驗結果為陽性,則其概率為,則每人所檢驗的次數(shù)為次,故的分布列為
②分組時,每人檢驗次數(shù)的期望如下
∴
不分組時,每人檢驗次數(shù)為1次,要使分組辦法能減少檢驗次數(shù),需 即
所以當時,用分組的辦法能減少檢驗次數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線,的公共點為.
(Ⅰ)求直線的斜率;
(Ⅱ)若點分別為曲線,上的動點,當取最大值時,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的圓心為(1,1),直線與圓C相切.
(1)求圓C的標準方程;
(2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】ΔABC的內(nèi)角A,B,C的對邊分別為a,b,c,根據(jù)下列條件解三角形,其中有兩解的是
A. a=2,b=3,A=30°B. b=6,c=4,A=120°
C. a=4,b=6,A=60°D. a=3,b=6,A=30°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個收購,高于或等于350克的以9元/個收購.
請你通過計算為該村選擇收益最好的方案.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx-)(其中ω>0)的圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求函數(shù)f(x)的圖象的對稱軸;
(Ⅱ)若函數(shù)y=f(x)-m在[0,π]內(nèi)有兩個零點x1,x2,求m的取值范圍及cos(x1+x2)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在梯形中,,,,,是的中點,是與的交點,以為折痕把折起,使點到達點的位置,且,如圖2.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了適應高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分數(shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(2)在上述樣本中,學校從成績?yōu)?/span>的學生中隨機抽取人進行學習交流,求這人來自同一個班級的概率.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為元,若該項目不獲利,政府將給予補貼.
(1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com