已知直線l過點(-2,0),當(dāng)直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是________.

 

<k<

【解析】易知圓心坐標(biāo)是(1,0),圓的半徑是1,直線l的方程是y=k(x+2),即kx-y+2k=0,根據(jù)點到直線的距離公式得<1,即k2<,解得-<k<

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第8課時練習(xí)卷(解析版) 題型:解答題

根據(jù)下列條件,求雙曲線方程.

(1)與雙曲線=1有共同的漸近線,且過點(-3,2);

(2)與雙曲線=1有公共焦點,且過點(3,2).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

方程=1表示橢圓,則k的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第5課時練習(xí)卷(解析版) 題型:填空題

已知圓O的半徑為1,PA、PB為該圓的兩條切線,A、B為兩切點,那么·的最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第5課時練習(xí)卷(解析版) 題型:解答題

已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).

(1)若l1與圓相切,求l1的方程;

(2)若l1與圓相交于P、Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,判斷AM·AN是否為定值?若是,則求出定值;若不是,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第5課時練習(xí)卷(解析版) 題型:填空題

已知圓(x-1)2+(y+2)2=6與直線2x+y-5=0的位置關(guān)系是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:解答題

已知直線l1、l2分別與拋物線x2=4y相切于點A、B,且A、B兩點的橫坐標(biāo)分別為a、b(a、b∈R).

(1)求直線l1、l2的方程;

(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點R,經(jīng)過P、Q、R三點作圓C.

①當(dāng)a=4,b=-2時,求圓C的方程;

②當(dāng)a,b變化時,圓C是否過定點?若是,求出所有定點坐標(biāo);若不是,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第11課時練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線C的頂點在原點,焦點F的坐標(biāo)為(1,0).

(1)求拋物線C的標(biāo)準(zhǔn)方程;

(2)設(shè)M、N是拋物線C的準(zhǔn)線上的兩個動點,且它們的縱坐標(biāo)之積為-4,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點.

 

查看答案和解析>>

同步練習(xí)冊答案