如圖,四邊形為矩形,平面⊥平面,,為上的一點(diǎn),且⊥平面.
(1)求證:⊥;
(2)求證:∥平面.
(1)證明過程詳見解析;(2)證明過程詳見解析.
解析試題分析:本題主要考查空間兩條直線的位置關(guān)系、直線與平面垂直和平行等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、運(yùn)算能力和推理論證能力.第一問,利用平面與平面垂直的性質(zhì)證明⊥平面,再利用直線與平面垂直的判定定理證明⊥平面,即可得證;第二問,利用線面平行的判定定理證明,利用是中點(diǎn),是的中點(diǎn),所以∥,即可.
試題解析:(1)證明:∵平面⊥平面,平面∩平面=,⊥,
∴⊥平面,⊥.
∵∥,則⊥. 3分
又⊥平面,則⊥.
∵∩=,∴⊥平面,∴⊥. 7分
(2)設(shè)∩=,連接,易知是的中點(diǎn),
∵⊥平面,則⊥.
而,∴是中點(diǎn). 10分
在中,∥,
∵平面,平面,
∴∥平面. 14分
考點(diǎn):1.平面與平面垂直的性質(zhì);2.直線與平面垂直的判定定理;3.線面平行的判定定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角梯形中,,,,,,過作,垂足為.、分別是、的中點(diǎn).現(xiàn)將沿折起,使二面角的平面角為.
(1)求證:平面平面;
(2)求直線與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P ABC中,已知PA⊥平面ABC,△ABC是邊長(zhǎng)為2的正三角形,D,E分別為PB,PC中點(diǎn)
(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若PA,求證:平面ADE⊥平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱的底面是平行四邊形,且,,,為的中點(diǎn),平面.
(Ⅰ)證明:平面平面;
(Ⅱ)若,試求異面直線與所成角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為菱形,其中,,為的中點(diǎn).
(1) 求證:;
(2) 若平面平面,且為的中點(diǎn),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,側(cè)棱底面,,,,.
(1)證明:平面;
(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,菱形的邊長(zhǎng)為4,,.將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在四棱錐中,底面,面為正方形,為側(cè)棱上一點(diǎn),為上一點(diǎn).該四棱錐的正(主)視圖和側(cè)(左)視圖如圖2所示.
(Ⅰ)求四面體的體積;
(Ⅱ)證明:∥平面;
(Ⅲ)證明:平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com