6.函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期為24π,則f(π)=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 由條件利用兩角和差的正弦公式化簡f(x)的解析式,再利用正弦函數(shù)的周期性求得ω的值,可得f(π)=sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)的值.

解答 解:∵函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)
=sin[(ωx+$\frac{π}{4}$)+(ωx-$\frac{π}{4}$)]=sinωx 的最小正周期為24π,
∴$\frac{2π}{ω}$=24π,∴ω=$\frac{1}{12}$,f(x)=sin$\frac{x}{12}$,
則f(π)=sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)=sin$\frac{π}{3}$cos$\frac{π}{4}$-cos$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案為:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

點評 本題主要考查兩角和差的正弦公式,正弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=$\frac{2}{{e}^{x}+1}$在點(0,1)處切線的斜率為( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)在R上單調(diào)遞增,當(dāng)x1+x2=1時,恒有f(x1)+f(0)>f(x2)+f(1),則x1的取值范圍是( 。
A.(-∞,0)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.方程cosx=-$\frac{x}{6}$的根的個數(shù)( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在橢圓$\frac{{x}^{2}}{2}$+y2=1中,弦長為2的弦的中點的軌跡方程為10x4y2-8x2y4-3x6-8y4-4x2y2=0(-$\sqrt{2}$<x<$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若圓柱的軸截面是一個正方形,其面積為4S,則它的一個底面面積是        ( 。
A.4SB.4πSC.πSD.2πS

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果圓錐的側(cè)面展開圖是半圓,那么這個圓錐的軸截面對應(yīng)的等腰三角形的底角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知F1、F2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點,過F1且垂直于x軸的直線與橢圓交于M,N兩點,若△MNF2為等腰直角三角形,則橢圓的離心率e為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=sin(4x-\frac{π}{6})+\sqrt{3}sin(4x+\frac{π}{3})$
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{48}$個單位,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在[-π,0]上的值域.

查看答案和解析>>

同步練習(xí)冊答案